কাৰক
\left(4x-3\right)\left(6x+7\right)
মূল্যায়ন
\left(4x-3\right)\left(6x+7\right)
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
a+b=10 ab=24\left(-21\right)=-504
এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো 24x^{2}+ax+bx-21 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,504 -2,252 -3,168 -4,126 -6,84 -7,72 -8,63 -9,56 -12,42 -14,36 -18,28 -21,24
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে যোগাত্মক সংখ্যাটোৰ ঋণাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -504 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1+504=503 -2+252=250 -3+168=165 -4+126=122 -6+84=78 -7+72=65 -8+63=55 -9+56=47 -12+42=30 -14+36=22 -18+28=10 -21+24=3
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-18 b=28
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 10।
\left(24x^{2}-18x\right)+\left(28x-21\right)
24x^{2}+10x-21ক \left(24x^{2}-18x\right)+\left(28x-21\right) হিচাপে পুনৰ লিখক।
6x\left(4x-3\right)+7\left(4x-3\right)
প্ৰথম গোটত 6x আৰু দ্বিতীয় গোটত 7ৰ গুণনীয়ক উলিয়াওক।
\left(4x-3\right)\left(6x+7\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম 4x-3ৰ গুণনীয়ক উলিয়াওক।
24x^{2}+10x-21=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
x=\frac{-10±\sqrt{10^{2}-4\times 24\left(-21\right)}}{2\times 24}
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-10±\sqrt{100-4\times 24\left(-21\right)}}{2\times 24}
বৰ্গ 10৷
x=\frac{-10±\sqrt{100-96\left(-21\right)}}{2\times 24}
-4 বাৰ 24 পুৰণ কৰক৷
x=\frac{-10±\sqrt{100+2016}}{2\times 24}
-96 বাৰ -21 পুৰণ কৰক৷
x=\frac{-10±\sqrt{2116}}{2\times 24}
2016 লৈ 100 যোগ কৰক৷
x=\frac{-10±46}{2\times 24}
2116-ৰ বৰ্গমূল লওক৷
x=\frac{-10±46}{48}
2 বাৰ 24 পুৰণ কৰক৷
x=\frac{36}{48}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-10±46}{48} সমাধান কৰক৷ 46 লৈ -10 যোগ কৰক৷
x=\frac{3}{4}
12 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{36}{48} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=-\frac{56}{48}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-10±46}{48} সমাধান কৰক৷ -10-ৰ পৰা 46 বিয়োগ কৰক৷
x=-\frac{7}{6}
8 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{-56}{48} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
24x^{2}+10x-21=24\left(x-\frac{3}{4}\right)\left(x-\left(-\frac{7}{6}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যৱহাৰ কৰিলে মূল উপাদান হয়৷ x_{1}ৰ বাবে \frac{3}{4} আৰু x_{2}ৰ বাবে -\frac{7}{6} বিকল্প৷
24x^{2}+10x-21=24\left(x-\frac{3}{4}\right)\left(x+\frac{7}{6}\right)
প্ৰপত্ৰ p-\left(-q\right) ৰ পৰা p+q লৈ সকলো এক্সপ্ৰেশ্বন সৰলীকৃত কৰক৷
24x^{2}+10x-21=24\times \frac{4x-3}{4}\left(x+\frac{7}{6}\right)
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক বিয়োগ কৰি x-ৰ পৰা \frac{3}{4} বিয়োগ কৰক৷ ইয়াৰ পিছত ভাজকক সৰ্বনিম্ন পদৰ পৰা যদি সম্ভৱ হয়, তেতিয়া হ্ৰাস কৰক৷
24x^{2}+10x-21=24\times \frac{4x-3}{4}\times \frac{6x+7}{6}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি x লৈ \frac{7}{6} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
24x^{2}+10x-21=24\times \frac{\left(4x-3\right)\left(6x+7\right)}{4\times 6}
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি \frac{4x-3}{4} বাৰ \frac{6x+7}{6} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
24x^{2}+10x-21=24\times \frac{\left(4x-3\right)\left(6x+7\right)}{24}
4 বাৰ 6 পুৰণ কৰক৷
24x^{2}+10x-21=\left(4x-3\right)\left(6x+7\right)
24 আৰু 24-ত সৰ্বাধিক পৰিচিত কাৰক 24 বাতিল কৰাটো বাদ দিয়ক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}