x-ৰ বাবে সমাধান কৰক
x=\frac{\log_{23}\left(54\right)-1}{2}\approx 0.136101324
x-ৰ বাবে সমাধান কৰক (জটিল সমাধান)
x=\frac{\pi n_{1}i}{\ln(23)}+\frac{\log_{23}\left(54\right)}{2}-\frac{1}{2}
n_{1}\in \mathrm{Z}
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
23^{2x+1}=54
সমীকৰণটো সমাধান কৰিবৰ বাবে এক্সপ'নেণ্ট আৰু ল'গাৰিথিমৰ নিয়মসমূহ পালন কৰক৷
\log(23^{2x+1})=\log(54)
সমীকৰণৰ দুয়োটা দিশৰ লঘুগণক লওক৷
\left(2x+1\right)\log(23)=\log(54)
এটা সংখ্যাৰ লঘুগণকে এটা পাৱাৰ বৃদ্ধি কৰে, যি সংখ্যাৰ লঘুগণকৰ পাৱাৰ টাইম৷
2x+1=\frac{\log(54)}{\log(23)}
\log(23)-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
2x+1=\log_{23}\left(54\right)
চেইঞ্জ-অৱ-বেচ ফৰ্মুলাৰ দ্বাৰা \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right)৷
2x=\log_{23}\left(54\right)-1
সমীকৰণৰ দুয়োটা দিশৰ পৰা 1 বিয়োগ কৰক৷
x=\frac{\log_{23}\left(54\right)-1}{2}
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}