মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

2x^{2}-6x+5\left(x-3\right)=0
2xক x-3ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
2x^{2}-6x+5x-15=0
5ক x-3ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
2x^{2}-x-15=0
-x লাভ কৰিবলৈ -6x আৰু 5x একত্ৰ কৰক৷
a+b=-1 ab=2\left(-15\right)=-30
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে 2x^{2}+ax+bx-15 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,-30 2,-15 3,-10 5,-6
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে ঋণাত্মক সংখ্যাটোৰ যোগাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -30 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1-30=-29 2-15=-13 3-10=-7 5-6=-1
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-6 b=5
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -1।
\left(2x^{2}-6x\right)+\left(5x-15\right)
2x^{2}-x-15ক \left(2x^{2}-6x\right)+\left(5x-15\right) হিচাপে পুনৰ লিখক।
2x\left(x-3\right)+5\left(x-3\right)
প্ৰথম গোটত 2x আৰু দ্বিতীয় গোটত 5ৰ গুণনীয়ক উলিয়াওক।
\left(x-3\right)\left(2x+5\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-3ৰ গুণনীয়ক উলিয়াওক।
x=3 x=-\frac{5}{2}
সমীকৰণ উলিয়াবলৈ, x-3=0 আৰু 2x+5=0 সমাধান কৰক।
2x^{2}-6x+5\left(x-3\right)=0
2xক x-3ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
2x^{2}-6x+5x-15=0
5ক x-3ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
2x^{2}-x-15=0
-x লাভ কৰিবলৈ -6x আৰু 5x একত্ৰ কৰক৷
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-15\right)}}{2\times 2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 2, b-ৰ বাবে -1, c-ৰ বাবে -15 চাবষ্টিটিউট৷
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-15\right)}}{2\times 2}
-4 বাৰ 2 পুৰণ কৰক৷
x=\frac{-\left(-1\right)±\sqrt{1+120}}{2\times 2}
-8 বাৰ -15 পুৰণ কৰক৷
x=\frac{-\left(-1\right)±\sqrt{121}}{2\times 2}
120 লৈ 1 যোগ কৰক৷
x=\frac{-\left(-1\right)±11}{2\times 2}
121-ৰ বৰ্গমূল লওক৷
x=\frac{1±11}{2\times 2}
-1ৰ বিপৰীত হৈছে 1৷
x=\frac{1±11}{4}
2 বাৰ 2 পুৰণ কৰক৷
x=\frac{12}{4}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{1±11}{4} সমাধান কৰক৷ 11 লৈ 1 যোগ কৰক৷
x=3
4-ৰ দ্বাৰা 12 হৰণ কৰক৷
x=-\frac{10}{4}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{1±11}{4} সমাধান কৰক৷ 1-ৰ পৰা 11 বিয়োগ কৰক৷
x=-\frac{5}{2}
2 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{-10}{4} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=3 x=-\frac{5}{2}
সমীকৰণটো এতিয়া সমাধান হৈছে৷
2x^{2}-6x+5\left(x-3\right)=0
2xক x-3ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
2x^{2}-6x+5x-15=0
5ক x-3ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
2x^{2}-x-15=0
-x লাভ কৰিবলৈ -6x আৰু 5x একত্ৰ কৰক৷
2x^{2}-x=15
উভয় কাষে 15 যোগ কৰক। শূণ্যৰ লগত যিকোনো যোগ কৰিলে একেটাই দিয়ে৷
\frac{2x^{2}-x}{2}=\frac{15}{2}
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}-\frac{1}{2}x=\frac{15}{2}
2-ৰ দ্বাৰা হৰণ কৰিলে 2-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{15}{2}+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{2} হৰণ কৰক, -\frac{1}{4} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -\frac{1}{4}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{15}{2}+\frac{1}{16}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি -\frac{1}{4} বৰ্গ কৰক৷
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{121}{16}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{1}{16} লৈ \frac{15}{2} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
\left(x-\frac{1}{4}\right)^{2}=\frac{121}{16}
উৎপাদক x^{2}-\frac{1}{2}x+\frac{1}{16} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{121}{16}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-\frac{1}{4}=\frac{11}{4} x-\frac{1}{4}=-\frac{11}{4}
সৰলীকৰণ৷
x=3 x=-\frac{5}{2}
সমীকৰণৰ দুয়োটা দিশতে \frac{1}{4} যোগ কৰক৷