কাৰক
2\left(x-18\right)\left(x+2\right)x^{4}
মূল্যায়ন
2\left(x-18\right)\left(x+2\right)x^{4}
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
2\left(x^{6}-16x^{5}-36x^{4}\right)
2ৰ গুণনীয়ক উলিয়াওক।
x^{4}\left(x^{2}-16x-36\right)
x^{6}-16x^{5}-36x^{4} বিবেচনা কৰক। x^{4}ৰ গুণনীয়ক উলিয়াওক।
a+b=-16 ab=1\left(-36\right)=-36
x^{2}-16x-36 বিবেচনা কৰক। এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো x^{2}+ax+bx-36 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,-36 2,-18 3,-12 4,-9 6,-6
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে ঋণাত্মক সংখ্যাটোৰ যোগাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -36 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-18 b=2
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -16।
\left(x^{2}-18x\right)+\left(2x-36\right)
x^{2}-16x-36ক \left(x^{2}-18x\right)+\left(2x-36\right) হিচাপে পুনৰ লিখক।
x\left(x-18\right)+2\left(x-18\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত 2ৰ গুণনীয়ক উলিয়াওক।
\left(x-18\right)\left(x+2\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-18ৰ গুণনীয়ক উলিয়াওক।
2x^{4}\left(x-18\right)\left(x+2\right)
সম্পূৰ্ণ উৎপাদক উলিওৱা অভিব্যক্তি পুনৰ লিখক।
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}