মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

2x^{2}-9x+5=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 2\times 5}}{2\times 2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 2, b-ৰ বাবে -9, c-ৰ বাবে 5 চাবষ্টিটিউট৷
x=\frac{-\left(-9\right)±\sqrt{81-4\times 2\times 5}}{2\times 2}
বৰ্গ -9৷
x=\frac{-\left(-9\right)±\sqrt{81-8\times 5}}{2\times 2}
-4 বাৰ 2 পুৰণ কৰক৷
x=\frac{-\left(-9\right)±\sqrt{81-40}}{2\times 2}
-8 বাৰ 5 পুৰণ কৰক৷
x=\frac{-\left(-9\right)±\sqrt{41}}{2\times 2}
-40 লৈ 81 যোগ কৰক৷
x=\frac{9±\sqrt{41}}{2\times 2}
-9ৰ বিপৰীত হৈছে 9৷
x=\frac{9±\sqrt{41}}{4}
2 বাৰ 2 পুৰণ কৰক৷
x=\frac{\sqrt{41}+9}{4}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{9±\sqrt{41}}{4} সমাধান কৰক৷ \sqrt{41} লৈ 9 যোগ কৰক৷
x=\frac{9-\sqrt{41}}{4}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{9±\sqrt{41}}{4} সমাধান কৰক৷ 9-ৰ পৰা \sqrt{41} বিয়োগ কৰক৷
x=\frac{\sqrt{41}+9}{4} x=\frac{9-\sqrt{41}}{4}
সমীকৰণটো এতিয়া সমাধান হৈছে৷
2x^{2}-9x+5=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
2x^{2}-9x+5-5=-5
সমীকৰণৰ দুয়োটা দিশৰ পৰা 5 বিয়োগ কৰক৷
2x^{2}-9x=-5
ইয়াৰ নিজৰ পৰা 5 বিয়োগ কৰিলে 0 থাকে৷
\frac{2x^{2}-9x}{2}=-\frac{5}{2}
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}-\frac{9}{2}x=-\frac{5}{2}
2-ৰ দ্বাৰা হৰণ কৰিলে 2-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}-\frac{9}{2}x+\left(-\frac{9}{4}\right)^{2}=-\frac{5}{2}+\left(-\frac{9}{4}\right)^{2}
-\frac{9}{2} হৰণ কৰক, -\frac{9}{4} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -\frac{9}{4}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-\frac{9}{2}x+\frac{81}{16}=-\frac{5}{2}+\frac{81}{16}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি -\frac{9}{4} বৰ্গ কৰক৷
x^{2}-\frac{9}{2}x+\frac{81}{16}=\frac{41}{16}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{81}{16} লৈ -\frac{5}{2} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
\left(x-\frac{9}{4}\right)^{2}=\frac{41}{16}
উৎপাদক x^{2}-\frac{9}{2}x+\frac{81}{16} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-\frac{9}{4}\right)^{2}}=\sqrt{\frac{41}{16}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-\frac{9}{4}=\frac{\sqrt{41}}{4} x-\frac{9}{4}=-\frac{\sqrt{41}}{4}
সৰলীকৰণ৷
x=\frac{\sqrt{41}+9}{4} x=\frac{9-\sqrt{41}}{4}
সমীকৰণৰ দুয়োটা দিশতে \frac{9}{4} যোগ কৰক৷