মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

2x^{2}-2x-1=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\left(-1\right)}}{2\times 2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 2, b-ৰ বাবে -2, c-ৰ বাবে -1 চাবষ্টিটিউট৷
x=\frac{-\left(-2\right)±\sqrt{4-4\times 2\left(-1\right)}}{2\times 2}
বৰ্গ -2৷
x=\frac{-\left(-2\right)±\sqrt{4-8\left(-1\right)}}{2\times 2}
-4 বাৰ 2 পুৰণ কৰক৷
x=\frac{-\left(-2\right)±\sqrt{4+8}}{2\times 2}
-8 বাৰ -1 পুৰণ কৰক৷
x=\frac{-\left(-2\right)±\sqrt{12}}{2\times 2}
8 লৈ 4 যোগ কৰক৷
x=\frac{-\left(-2\right)±2\sqrt{3}}{2\times 2}
12-ৰ বৰ্গমূল লওক৷
x=\frac{2±2\sqrt{3}}{2\times 2}
-2ৰ বিপৰীত হৈছে 2৷
x=\frac{2±2\sqrt{3}}{4}
2 বাৰ 2 পুৰণ কৰক৷
x=\frac{2\sqrt{3}+2}{4}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{2±2\sqrt{3}}{4} সমাধান কৰক৷ 2\sqrt{3} লৈ 2 যোগ কৰক৷
x=\frac{\sqrt{3}+1}{2}
4-ৰ দ্বাৰা 2+2\sqrt{3} হৰণ কৰক৷
x=\frac{2-2\sqrt{3}}{4}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{2±2\sqrt{3}}{4} সমাধান কৰক৷ 2-ৰ পৰা 2\sqrt{3} বিয়োগ কৰক৷
x=\frac{1-\sqrt{3}}{2}
4-ৰ দ্বাৰা 2-2\sqrt{3} হৰণ কৰক৷
x=\frac{\sqrt{3}+1}{2} x=\frac{1-\sqrt{3}}{2}
সমীকৰণটো এতিয়া সমাধান হৈছে৷
2x^{2}-2x-1=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
2x^{2}-2x-1-\left(-1\right)=-\left(-1\right)
সমীকৰণৰ দুয়োটা দিশতে 1 যোগ কৰক৷
2x^{2}-2x=-\left(-1\right)
ইয়াৰ নিজৰ পৰা -1 বিয়োগ কৰিলে 0 থাকে৷
2x^{2}-2x=1
0-ৰ পৰা -1 বিয়োগ কৰক৷
\frac{2x^{2}-2x}{2}=\frac{1}{2}
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\left(-\frac{2}{2}\right)x=\frac{1}{2}
2-ৰ দ্বাৰা হৰণ কৰিলে 2-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}-x=\frac{1}{2}
2-ৰ দ্বাৰা -2 হৰণ কৰক৷
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{1}{2}+\left(-\frac{1}{2}\right)^{2}
-1 হৰণ কৰক, -\frac{1}{2} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -\frac{1}{2}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-x+\frac{1}{4}=\frac{1}{2}+\frac{1}{4}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি -\frac{1}{2} বৰ্গ কৰক৷
x^{2}-x+\frac{1}{4}=\frac{3}{4}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{1}{4} লৈ \frac{1}{2} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
\left(x-\frac{1}{2}\right)^{2}=\frac{3}{4}
উৎপাদক x^{2}-x+\frac{1}{4} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{3}{4}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-\frac{1}{2}=\frac{\sqrt{3}}{2} x-\frac{1}{2}=-\frac{\sqrt{3}}{2}
সৰলীকৰণ৷
x=\frac{\sqrt{3}+1}{2} x=\frac{1-\sqrt{3}}{2}
সমীকৰণৰ দুয়োটা দিশতে \frac{1}{2} যোগ কৰক৷