মুখ্য সমললৈ এৰি যাওক
কাৰক
Tick mark Image
মূল্যায়ন
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

a+b=-13 ab=2\times 20=40
এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো 2x^{2}+ax+bx+20 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,-40 -2,-20 -4,-10 -5,-8
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে a আৰু b দুয়োটাই ঋণাত্মক। যিবোৰ যোৰাই গুণফল 40 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1-40=-41 -2-20=-22 -4-10=-14 -5-8=-13
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-8 b=-5
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -13।
\left(2x^{2}-8x\right)+\left(-5x+20\right)
2x^{2}-13x+20ক \left(2x^{2}-8x\right)+\left(-5x+20\right) হিচাপে পুনৰ লিখক।
2x\left(x-4\right)-5\left(x-4\right)
প্ৰথম গোটত 2x আৰু দ্বিতীয় গোটত -5ৰ গুণনীয়ক উলিয়াওক।
\left(x-4\right)\left(2x-5\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-4ৰ গুণনীয়ক উলিয়াওক।
2x^{2}-13x+20=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 2\times 20}}{2\times 2}
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-13\right)±\sqrt{169-4\times 2\times 20}}{2\times 2}
বৰ্গ -13৷
x=\frac{-\left(-13\right)±\sqrt{169-8\times 20}}{2\times 2}
-4 বাৰ 2 পুৰণ কৰক৷
x=\frac{-\left(-13\right)±\sqrt{169-160}}{2\times 2}
-8 বাৰ 20 পুৰণ কৰক৷
x=\frac{-\left(-13\right)±\sqrt{9}}{2\times 2}
-160 লৈ 169 যোগ কৰক৷
x=\frac{-\left(-13\right)±3}{2\times 2}
9-ৰ বৰ্গমূল লওক৷
x=\frac{13±3}{2\times 2}
-13ৰ বিপৰীত হৈছে 13৷
x=\frac{13±3}{4}
2 বাৰ 2 পুৰণ কৰক৷
x=\frac{16}{4}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{13±3}{4} সমাধান কৰক৷ 3 লৈ 13 যোগ কৰক৷
x=4
4-ৰ দ্বাৰা 16 হৰণ কৰক৷
x=\frac{10}{4}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{13±3}{4} সমাধান কৰক৷ 13-ৰ পৰা 3 বিয়োগ কৰক৷
x=\frac{5}{2}
2 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{10}{4} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
2x^{2}-13x+20=2\left(x-4\right)\left(x-\frac{5}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যৱহাৰ কৰিলে মূল উপাদান হয়৷ x_{1}ৰ বাবে 4 আৰু x_{2}ৰ বাবে \frac{5}{2} বিকল্প৷
2x^{2}-13x+20=2\left(x-4\right)\times \frac{2x-5}{2}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক বিয়োগ কৰি x-ৰ পৰা \frac{5}{2} বিয়োগ কৰক৷ ইয়াৰ পিছত ভাজকক সৰ্বনিম্ন পদৰ পৰা যদি সম্ভৱ হয়, তেতিয়া হ্ৰাস কৰক৷
2x^{2}-13x+20=\left(x-4\right)\left(2x-5\right)
2 আৰু 2-ত সৰ্বাধিক পৰিচিত কাৰক 2 বাতিল কৰাটো বাদ দিয়ক৷