মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

2x^{2}-x=5
দুয়োটা দিশৰ পৰা x বিয়োগ কৰক৷
2x^{2}-x-5=0
দুয়োটা দিশৰ পৰা 5 বিয়োগ কৰক৷
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-5\right)}}{2\times 2}
সমীকৰণটো এটা মান্য ৰূপত থাকে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰত a-ৰ বাবে 2, b-ৰ বাবে -1, c-ৰ বাবে -5 চাবষ্টিটিউট কৰক, \frac{-b±\sqrt{b^{2}-4ac}}{2a} আৰু ইয়াক ± প্লাচ হ’লে সমাধান কৰক৷
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-5\right)}}{2\times 2}
-4 বাৰ 2 পুৰণ কৰক৷
x=\frac{-\left(-1\right)±\sqrt{1+40}}{2\times 2}
-8 বাৰ -5 পুৰণ কৰক৷
x=\frac{-\left(-1\right)±\sqrt{41}}{2\times 2}
40 লৈ 1 যোগ কৰক৷
x=\frac{1±\sqrt{41}}{2\times 2}
-1ৰ বিপৰীত হৈছে 1৷
x=\frac{1±\sqrt{41}}{4}
2 বাৰ 2 পুৰণ কৰক৷
x=\frac{\sqrt{41}+1}{4}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{1±\sqrt{41}}{4} সমাধান কৰক৷ \sqrt{41} লৈ 1 যোগ কৰক৷
x=\frac{1-\sqrt{41}}{4}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{1±\sqrt{41}}{4} সমাধান কৰক৷ 1-ৰ পৰা \sqrt{41} বিয়োগ কৰক৷
x=\frac{\sqrt{41}+1}{4} x=\frac{1-\sqrt{41}}{4}
সমীকৰণটো এতিয়া সমাধান হৈছে৷
2x^{2}-x=5
দুয়োটা দিশৰ পৰা x বিয়োগ কৰক৷
\frac{2x^{2}-x}{2}=\frac{5}{2}
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}-\frac{1}{2}x=\frac{5}{2}
2-ৰ দ্বাৰা হৰণ কৰিলে 2-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{5}{2}+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{2} হৰণ কৰক, -\frac{1}{4} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -\frac{1}{4}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{5}{2}+\frac{1}{16}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি -\frac{1}{4} বৰ্গ কৰক৷
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{41}{16}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{1}{16} লৈ \frac{5}{2} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
\left(x-\frac{1}{4}\right)^{2}=\frac{41}{16}
ফেক্টৰ x^{2}-\frac{1}{2}x+\frac{1}{16}৷ সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা সুনিৰ্দিষ্ট বৰ্গ হয়, ই সদায়ে \left(x+\frac{b}{2}\right)^{2} ৰূপে ফেক্টৰ হয়৷
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{41}{16}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-\frac{1}{4}=\frac{\sqrt{41}}{4} x-\frac{1}{4}=-\frac{\sqrt{41}}{4}
সৰলীকৰণ৷
x=\frac{\sqrt{41}+1}{4} x=\frac{1-\sqrt{41}}{4}
সমীকৰণৰ দুয়োটা দিশতে \frac{1}{4} যোগ কৰক৷