x-ৰ বাবে সমাধান কৰক (জটিল সমাধান)
x=\sqrt{6}-1\approx 1.449489743
x=-\left(\sqrt{6}+1\right)\approx -3.449489743
x-ৰ বাবে সমাধান কৰক
x=\sqrt{6}-1\approx 1.449489743
x=-\sqrt{6}-1\approx -3.449489743
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
2x^{2}+4x=10
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
2x^{2}+4x-10=10-10
সমীকৰণৰ দুয়োটা দিশৰ পৰা 10 বিয়োগ কৰক৷
2x^{2}+4x-10=0
ইয়াৰ নিজৰ পৰা 10 বিয়োগ কৰিলে 0 থাকে৷
x=\frac{-4±\sqrt{4^{2}-4\times 2\left(-10\right)}}{2\times 2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 2, b-ৰ বাবে 4, c-ৰ বাবে -10 চাবষ্টিটিউট৷
x=\frac{-4±\sqrt{16-4\times 2\left(-10\right)}}{2\times 2}
বৰ্গ 4৷
x=\frac{-4±\sqrt{16-8\left(-10\right)}}{2\times 2}
-4 বাৰ 2 পুৰণ কৰক৷
x=\frac{-4±\sqrt{16+80}}{2\times 2}
-8 বাৰ -10 পুৰণ কৰক৷
x=\frac{-4±\sqrt{96}}{2\times 2}
80 লৈ 16 যোগ কৰক৷
x=\frac{-4±4\sqrt{6}}{2\times 2}
96-ৰ বৰ্গমূল লওক৷
x=\frac{-4±4\sqrt{6}}{4}
2 বাৰ 2 পুৰণ কৰক৷
x=\frac{4\sqrt{6}-4}{4}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-4±4\sqrt{6}}{4} সমাধান কৰক৷ 4\sqrt{6} লৈ -4 যোগ কৰক৷
x=\sqrt{6}-1
4-ৰ দ্বাৰা -4+4\sqrt{6} হৰণ কৰক৷
x=\frac{-4\sqrt{6}-4}{4}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-4±4\sqrt{6}}{4} সমাধান কৰক৷ -4-ৰ পৰা 4\sqrt{6} বিয়োগ কৰক৷
x=-\sqrt{6}-1
4-ৰ দ্বাৰা -4-4\sqrt{6} হৰণ কৰক৷
x=\sqrt{6}-1 x=-\sqrt{6}-1
সমীকৰণটো এতিয়া সমাধান হৈছে৷
2x^{2}+4x=10
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
\frac{2x^{2}+4x}{2}=\frac{10}{2}
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\frac{4}{2}x=\frac{10}{2}
2-ৰ দ্বাৰা হৰণ কৰিলে 2-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}+2x=\frac{10}{2}
2-ৰ দ্বাৰা 4 হৰণ কৰক৷
x^{2}+2x=5
2-ৰ দ্বাৰা 10 হৰণ কৰক৷
x^{2}+2x+1^{2}=5+1^{2}
2 হৰণ কৰক, 1 লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে 1ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}+2x+1=5+1
বৰ্গ 1৷
x^{2}+2x+1=6
1 লৈ 5 যোগ কৰক৷
\left(x+1\right)^{2}=6
উৎপাদক x^{2}+2x+1 । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x+1\right)^{2}}=\sqrt{6}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x+1=\sqrt{6} x+1=-\sqrt{6}
সৰলীকৰণ৷
x=\sqrt{6}-1 x=-\sqrt{6}-1
সমীকৰণৰ দুয়োটা দিশৰ পৰা 1 বিয়োগ কৰক৷
2x^{2}+4x=10
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
2x^{2}+4x-10=10-10
সমীকৰণৰ দুয়োটা দিশৰ পৰা 10 বিয়োগ কৰক৷
2x^{2}+4x-10=0
ইয়াৰ নিজৰ পৰা 10 বিয়োগ কৰিলে 0 থাকে৷
x=\frac{-4±\sqrt{4^{2}-4\times 2\left(-10\right)}}{2\times 2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 2, b-ৰ বাবে 4, c-ৰ বাবে -10 চাবষ্টিটিউট৷
x=\frac{-4±\sqrt{16-4\times 2\left(-10\right)}}{2\times 2}
বৰ্গ 4৷
x=\frac{-4±\sqrt{16-8\left(-10\right)}}{2\times 2}
-4 বাৰ 2 পুৰণ কৰক৷
x=\frac{-4±\sqrt{16+80}}{2\times 2}
-8 বাৰ -10 পুৰণ কৰক৷
x=\frac{-4±\sqrt{96}}{2\times 2}
80 লৈ 16 যোগ কৰক৷
x=\frac{-4±4\sqrt{6}}{2\times 2}
96-ৰ বৰ্গমূল লওক৷
x=\frac{-4±4\sqrt{6}}{4}
2 বাৰ 2 পুৰণ কৰক৷
x=\frac{4\sqrt{6}-4}{4}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-4±4\sqrt{6}}{4} সমাধান কৰক৷ 4\sqrt{6} লৈ -4 যোগ কৰক৷
x=\sqrt{6}-1
4-ৰ দ্বাৰা -4+4\sqrt{6} হৰণ কৰক৷
x=\frac{-4\sqrt{6}-4}{4}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-4±4\sqrt{6}}{4} সমাধান কৰক৷ -4-ৰ পৰা 4\sqrt{6} বিয়োগ কৰক৷
x=-\sqrt{6}-1
4-ৰ দ্বাৰা -4-4\sqrt{6} হৰণ কৰক৷
x=\sqrt{6}-1 x=-\sqrt{6}-1
সমীকৰণটো এতিয়া সমাধান হৈছে৷
2x^{2}+4x=10
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
\frac{2x^{2}+4x}{2}=\frac{10}{2}
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\frac{4}{2}x=\frac{10}{2}
2-ৰ দ্বাৰা হৰণ কৰিলে 2-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}+2x=\frac{10}{2}
2-ৰ দ্বাৰা 4 হৰণ কৰক৷
x^{2}+2x=5
2-ৰ দ্বাৰা 10 হৰণ কৰক৷
x^{2}+2x+1^{2}=5+1^{2}
2 হৰণ কৰক, 1 লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে 1ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}+2x+1=5+1
বৰ্গ 1৷
x^{2}+2x+1=6
1 লৈ 5 যোগ কৰক৷
\left(x+1\right)^{2}=6
উৎপাদক x^{2}+2x+1 । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x+1\right)^{2}}=\sqrt{6}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x+1=\sqrt{6} x+1=-\sqrt{6}
সৰলীকৰণ৷
x=\sqrt{6}-1 x=-\sqrt{6}-1
সমীকৰণৰ দুয়োটা দিশৰ পৰা 1 বিয়োগ কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}