মুখ্য সমললৈ এৰি যাওক
কাৰক
Tick mark Image
মূল্যায়ন
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

2\left(x^{2}+5x+6\right)
2ৰ গুণনীয়ক উলিয়াওক।
a+b=5 ab=1\times 6=6
x^{2}+5x+6 বিবেচনা কৰক। এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো x^{2}+ax+bx+6 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,6 2,3
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে a আৰু b দুয়োটাই যোগাত্মক। যিবোৰ যোৰাই গুণফল 6 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1+6=7 2+3=5
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=2 b=3
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 5।
\left(x^{2}+2x\right)+\left(3x+6\right)
x^{2}+5x+6ক \left(x^{2}+2x\right)+\left(3x+6\right) হিচাপে পুনৰ লিখক।
x\left(x+2\right)+3\left(x+2\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত 3ৰ গুণনীয়ক উলিয়াওক।
\left(x+2\right)\left(x+3\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x+2ৰ গুণনীয়ক উলিয়াওক।
2\left(x+2\right)\left(x+3\right)
সম্পূৰ্ণ উৎপাদক উলিওৱা অভিব্যক্তি পুনৰ লিখক।
2x^{2}+10x+12=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
x=\frac{-10±\sqrt{10^{2}-4\times 2\times 12}}{2\times 2}
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-10±\sqrt{100-4\times 2\times 12}}{2\times 2}
বৰ্গ 10৷
x=\frac{-10±\sqrt{100-8\times 12}}{2\times 2}
-4 বাৰ 2 পুৰণ কৰক৷
x=\frac{-10±\sqrt{100-96}}{2\times 2}
-8 বাৰ 12 পুৰণ কৰক৷
x=\frac{-10±\sqrt{4}}{2\times 2}
-96 লৈ 100 যোগ কৰক৷
x=\frac{-10±2}{2\times 2}
4-ৰ বৰ্গমূল লওক৷
x=\frac{-10±2}{4}
2 বাৰ 2 পুৰণ কৰক৷
x=-\frac{8}{4}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-10±2}{4} সমাধান কৰক৷ 2 লৈ -10 যোগ কৰক৷
x=-2
4-ৰ দ্বাৰা -8 হৰণ কৰক৷
x=-\frac{12}{4}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-10±2}{4} সমাধান কৰক৷ -10-ৰ পৰা 2 বিয়োগ কৰক৷
x=-3
4-ৰ দ্বাৰা -12 হৰণ কৰক৷
2x^{2}+10x+12=2\left(x-\left(-2\right)\right)\left(x-\left(-3\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যৱহাৰ কৰিলে মূল উপাদান হয়৷ x_{1}ৰ বাবে -2 আৰু x_{2}ৰ বাবে -3 বিকল্প৷
2x^{2}+10x+12=2\left(x+2\right)\left(x+3\right)
প্ৰপত্ৰ p-\left(-q\right) ৰ পৰা p+q লৈ সকলো এক্সপ্ৰেশ্বন সৰলীকৃত কৰক৷