কাৰক
2\left(v-5\right)\left(v+6\right)
মূল্যায়ন
2\left(v-5\right)\left(v+6\right)
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
2\left(v^{2}+v-30\right)
2ৰ গুণনীয়ক উলিয়াওক।
a+b=1 ab=1\left(-30\right)=-30
v^{2}+v-30 বিবেচনা কৰক। এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো v^{2}+av+bv-30 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,30 -2,15 -3,10 -5,6
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে যোগাত্মক সংখ্যাটোৰ ঋণাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -30 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1+30=29 -2+15=13 -3+10=7 -5+6=1
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-5 b=6
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 1।
\left(v^{2}-5v\right)+\left(6v-30\right)
v^{2}+v-30ক \left(v^{2}-5v\right)+\left(6v-30\right) হিচাপে পুনৰ লিখক।
v\left(v-5\right)+6\left(v-5\right)
প্ৰথম গোটত v আৰু দ্বিতীয় গোটত 6ৰ গুণনীয়ক উলিয়াওক।
\left(v-5\right)\left(v+6\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম v-5ৰ গুণনীয়ক উলিয়াওক।
2\left(v-5\right)\left(v+6\right)
সম্পূৰ্ণ উৎপাদক উলিওৱা অভিব্যক্তি পুনৰ লিখক।
2v^{2}+2v-60=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
v=\frac{-2±\sqrt{2^{2}-4\times 2\left(-60\right)}}{2\times 2}
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
v=\frac{-2±\sqrt{4-4\times 2\left(-60\right)}}{2\times 2}
বৰ্গ 2৷
v=\frac{-2±\sqrt{4-8\left(-60\right)}}{2\times 2}
-4 বাৰ 2 পুৰণ কৰক৷
v=\frac{-2±\sqrt{4+480}}{2\times 2}
-8 বাৰ -60 পুৰণ কৰক৷
v=\frac{-2±\sqrt{484}}{2\times 2}
480 লৈ 4 যোগ কৰক৷
v=\frac{-2±22}{2\times 2}
484-ৰ বৰ্গমূল লওক৷
v=\frac{-2±22}{4}
2 বাৰ 2 পুৰণ কৰক৷
v=\frac{20}{4}
এতিয়া ± যোগ হ’লে সমীকৰণ v=\frac{-2±22}{4} সমাধান কৰক৷ 22 লৈ -2 যোগ কৰক৷
v=5
4-ৰ দ্বাৰা 20 হৰণ কৰক৷
v=-\frac{24}{4}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ v=\frac{-2±22}{4} সমাধান কৰক৷ -2-ৰ পৰা 22 বিয়োগ কৰক৷
v=-6
4-ৰ দ্বাৰা -24 হৰণ কৰক৷
2v^{2}+2v-60=2\left(v-5\right)\left(v-\left(-6\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যৱহাৰ কৰিলে মূল উপাদান হয়৷ x_{1}ৰ বাবে 5 আৰু x_{2}ৰ বাবে -6 বিকল্প৷
2v^{2}+2v-60=2\left(v-5\right)\left(v+6\right)
প্ৰপত্ৰ p-\left(-q\right) ৰ পৰা p+q লৈ সকলো এক্সপ্ৰেশ্বন সৰলীকৃত কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}