মুখ্য সমললৈ এৰি যাওক
r-ৰ বাবে সমাধান কৰক
Tick mark Image

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

a+b=-1 ab=2\left(-3\right)=-6
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে 2r^{2}+ar+br-3 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,-6 2,-3
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে ঋণাত্মক সংখ্যাটোৰ যোগাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -6 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1-6=-5 2-3=-1
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-3 b=2
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -1।
\left(2r^{2}-3r\right)+\left(2r-3\right)
2r^{2}-r-3ক \left(2r^{2}-3r\right)+\left(2r-3\right) হিচাপে পুনৰ লিখক।
r\left(2r-3\right)+2r-3
2r^{2}-3rত rৰ গুণনীয়ক উলিয়াওক।
\left(2r-3\right)\left(r+1\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম 2r-3ৰ গুণনীয়ক উলিয়াওক।
r=\frac{3}{2} r=-1
সমীকৰণ উলিয়াবলৈ, 2r-3=0 আৰু r+1=0 সমাধান কৰক।
2r^{2}-r-3=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
r=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-3\right)}}{2\times 2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 2, b-ৰ বাবে -1, c-ৰ বাবে -3 চাবষ্টিটিউট৷
r=\frac{-\left(-1\right)±\sqrt{1-8\left(-3\right)}}{2\times 2}
-4 বাৰ 2 পুৰণ কৰক৷
r=\frac{-\left(-1\right)±\sqrt{1+24}}{2\times 2}
-8 বাৰ -3 পুৰণ কৰক৷
r=\frac{-\left(-1\right)±\sqrt{25}}{2\times 2}
24 লৈ 1 যোগ কৰক৷
r=\frac{-\left(-1\right)±5}{2\times 2}
25-ৰ বৰ্গমূল লওক৷
r=\frac{1±5}{2\times 2}
-1ৰ বিপৰীত হৈছে 1৷
r=\frac{1±5}{4}
2 বাৰ 2 পুৰণ কৰক৷
r=\frac{6}{4}
এতিয়া ± যোগ হ’লে সমীকৰণ r=\frac{1±5}{4} সমাধান কৰক৷ 5 লৈ 1 যোগ কৰক৷
r=\frac{3}{2}
2 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{6}{4} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
r=-\frac{4}{4}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ r=\frac{1±5}{4} সমাধান কৰক৷ 1-ৰ পৰা 5 বিয়োগ কৰক৷
r=-1
4-ৰ দ্বাৰা -4 হৰণ কৰক৷
r=\frac{3}{2} r=-1
সমীকৰণটো এতিয়া সমাধান হৈছে৷
2r^{2}-r-3=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
2r^{2}-r-3-\left(-3\right)=-\left(-3\right)
সমীকৰণৰ দুয়োটা দিশতে 3 যোগ কৰক৷
2r^{2}-r=-\left(-3\right)
ইয়াৰ নিজৰ পৰা -3 বিয়োগ কৰিলে 0 থাকে৷
2r^{2}-r=3
0-ৰ পৰা -3 বিয়োগ কৰক৷
\frac{2r^{2}-r}{2}=\frac{3}{2}
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
r^{2}-\frac{1}{2}r=\frac{3}{2}
2-ৰ দ্বাৰা হৰণ কৰিলে 2-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
r^{2}-\frac{1}{2}r+\left(-\frac{1}{4}\right)^{2}=\frac{3}{2}+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{2} হৰণ কৰক, -\frac{1}{4} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -\frac{1}{4}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
r^{2}-\frac{1}{2}r+\frac{1}{16}=\frac{3}{2}+\frac{1}{16}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি -\frac{1}{4} বৰ্গ কৰক৷
r^{2}-\frac{1}{2}r+\frac{1}{16}=\frac{25}{16}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{1}{16} লৈ \frac{3}{2} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
\left(r-\frac{1}{4}\right)^{2}=\frac{25}{16}
উৎপাদক r^{2}-\frac{1}{2}r+\frac{1}{16} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(r-\frac{1}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
r-\frac{1}{4}=\frac{5}{4} r-\frac{1}{4}=-\frac{5}{4}
সৰলীকৰণ৷
r=\frac{3}{2} r=-1
সমীকৰণৰ দুয়োটা দিশতে \frac{1}{4} যোগ কৰক৷