কাৰক
2m\left(m-1\right)\left(m+9\right)
মূল্যায়ন
2m\left(m-1\right)\left(m+9\right)
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
2\left(m^{3}+8m^{2}-9m\right)
2ৰ গুণনীয়ক উলিয়াওক।
m\left(m^{2}+8m-9\right)
m^{3}+8m^{2}-9m বিবেচনা কৰক। mৰ গুণনীয়ক উলিয়াওক।
a+b=8 ab=1\left(-9\right)=-9
m^{2}+8m-9 বিবেচনা কৰক। এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো m^{2}+am+bm-9 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,9 -3,3
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে যোগাত্মক সংখ্যাটোৰ ঋণাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -9 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1+9=8 -3+3=0
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-1 b=9
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 8।
\left(m^{2}-m\right)+\left(9m-9\right)
m^{2}+8m-9ক \left(m^{2}-m\right)+\left(9m-9\right) হিচাপে পুনৰ লিখক।
m\left(m-1\right)+9\left(m-1\right)
প্ৰথম গোটত m আৰু দ্বিতীয় গোটত 9ৰ গুণনীয়ক উলিয়াওক।
\left(m-1\right)\left(m+9\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম m-1ৰ গুণনীয়ক উলিয়াওক।
2m\left(m-1\right)\left(m+9\right)
সম্পূৰ্ণ উৎপাদক উলিওৱা অভিব্যক্তি পুনৰ লিখক।
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}