মুখ্য সমললৈ এৰি যাওক
কাৰক
Tick mark Image
মূল্যায়ন
Tick mark Image

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

p+q=5 pq=2\left(-12\right)=-24
এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো 2a^{2}+pa+qa-12 হিচাপে পুনৰ লিখিব লাগিব। p আৰু q বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,24 -2,12 -3,8 -4,6
যিহেতু pq ঋণাত্মক, সেয়েহে p আৰু qৰ বিপৰীত সংকেত আছে। যিহেতু p+q যোগাত্মক, সেয়েহে যোগাত্মক সংখ্যাটোৰ ঋণাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -24 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1+24=23 -2+12=10 -3+8=5 -4+6=2
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
p=-3 q=8
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 5।
\left(2a^{2}-3a\right)+\left(8a-12\right)
2a^{2}+5a-12ক \left(2a^{2}-3a\right)+\left(8a-12\right) হিচাপে পুনৰ লিখক।
a\left(2a-3\right)+4\left(2a-3\right)
প্ৰথম গোটত a আৰু দ্বিতীয় গোটত 4ৰ গুণনীয়ক উলিয়াওক।
\left(2a-3\right)\left(a+4\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম 2a-3ৰ গুণনীয়ক উলিয়াওক।
2a^{2}+5a-12=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
a=\frac{-5±\sqrt{5^{2}-4\times 2\left(-12\right)}}{2\times 2}
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
a=\frac{-5±\sqrt{25-4\times 2\left(-12\right)}}{2\times 2}
বৰ্গ 5৷
a=\frac{-5±\sqrt{25-8\left(-12\right)}}{2\times 2}
-4 বাৰ 2 পুৰণ কৰক৷
a=\frac{-5±\sqrt{25+96}}{2\times 2}
-8 বাৰ -12 পুৰণ কৰক৷
a=\frac{-5±\sqrt{121}}{2\times 2}
96 লৈ 25 যোগ কৰক৷
a=\frac{-5±11}{2\times 2}
121-ৰ বৰ্গমূল লওক৷
a=\frac{-5±11}{4}
2 বাৰ 2 পুৰণ কৰক৷
a=\frac{6}{4}
এতিয়া ± যোগ হ’লে সমীকৰণ a=\frac{-5±11}{4} সমাধান কৰক৷ 11 লৈ -5 যোগ কৰক৷
a=\frac{3}{2}
2 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{6}{4} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
a=-\frac{16}{4}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ a=\frac{-5±11}{4} সমাধান কৰক৷ -5-ৰ পৰা 11 বিয়োগ কৰক৷
a=-4
4-ৰ দ্বাৰা -16 হৰণ কৰক৷
2a^{2}+5a-12=2\left(a-\frac{3}{2}\right)\left(a-\left(-4\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যৱহাৰ কৰিলে মূল উপাদান হয়৷ x_{1}ৰ বাবে \frac{3}{2} আৰু x_{2}ৰ বাবে -4 বিকল্প৷
2a^{2}+5a-12=2\left(a-\frac{3}{2}\right)\left(a+4\right)
প্ৰপত্ৰ p-\left(-q\right) ৰ পৰা p+q লৈ সকলো এক্সপ্ৰেশ্বন সৰলীকৃত কৰক৷
2a^{2}+5a-12=2\times \frac{2a-3}{2}\left(a+4\right)
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক বিয়োগ কৰি a-ৰ পৰা \frac{3}{2} বিয়োগ কৰক৷ ইয়াৰ পিছত ভাজকক সৰ্বনিম্ন পদৰ পৰা যদি সম্ভৱ হয়, তেতিয়া হ্ৰাস কৰক৷
2a^{2}+5a-12=\left(2a-3\right)\left(a+4\right)
2 আৰু 2-ত সৰ্বাধিক পৰিচিত কাৰক 2 বাতিল কৰাটো বাদ দিয়ক৷