x-ৰ বাবে সমাধান কৰক
x=1
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
a+b=-7 ab=2\times 5=10
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে 2x^{2}+ax+bx+5 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,-10 -2,-5
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে a আৰু b দুয়োটাই ঋণাত্মক। যিবোৰ যোৰাই গুণফল 10 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1-10=-11 -2-5=-7
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-5 b=-2
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -7।
\left(2x^{2}-5x\right)+\left(-2x+5\right)
2x^{2}-7x+5ক \left(2x^{2}-5x\right)+\left(-2x+5\right) হিচাপে পুনৰ লিখক।
x\left(2x-5\right)-\left(2x-5\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত -1ৰ গুণনীয়ক উলিয়াওক।
\left(2x-5\right)\left(x-1\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম 2x-5ৰ গুণনীয়ক উলিয়াওক।
x=\frac{5}{2} x=1
সমীকৰণ উলিয়াবলৈ, 2x-5=0 আৰু x-1=0 সমাধান কৰক।
2x^{2}-7x+5=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 2\times 5}}{2\times 2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 2, b-ৰ বাবে -7, c-ৰ বাবে 5 চাবষ্টিটিউট৷
x=\frac{-\left(-7\right)±\sqrt{49-4\times 2\times 5}}{2\times 2}
বৰ্গ -7৷
x=\frac{-\left(-7\right)±\sqrt{49-8\times 5}}{2\times 2}
-4 বাৰ 2 পুৰণ কৰক৷
x=\frac{-\left(-7\right)±\sqrt{49-40}}{2\times 2}
-8 বাৰ 5 পুৰণ কৰক৷
x=\frac{-\left(-7\right)±\sqrt{9}}{2\times 2}
-40 লৈ 49 যোগ কৰক৷
x=\frac{-\left(-7\right)±3}{2\times 2}
9-ৰ বৰ্গমূল লওক৷
x=\frac{7±3}{2\times 2}
-7ৰ বিপৰীত হৈছে 7৷
x=\frac{7±3}{4}
2 বাৰ 2 পুৰণ কৰক৷
x=\frac{10}{4}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{7±3}{4} সমাধান কৰক৷ 3 লৈ 7 যোগ কৰক৷
x=\frac{5}{2}
2 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{10}{4} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=\frac{4}{4}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{7±3}{4} সমাধান কৰক৷ 7-ৰ পৰা 3 বিয়োগ কৰক৷
x=1
4-ৰ দ্বাৰা 4 হৰণ কৰক৷
x=\frac{5}{2} x=1
সমীকৰণটো এতিয়া সমাধান হৈছে৷
2x^{2}-7x+5=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
2x^{2}-7x+5-5=-5
সমীকৰণৰ দুয়োটা দিশৰ পৰা 5 বিয়োগ কৰক৷
2x^{2}-7x=-5
ইয়াৰ নিজৰ পৰা 5 বিয়োগ কৰিলে 0 থাকে৷
\frac{2x^{2}-7x}{2}=-\frac{5}{2}
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}-\frac{7}{2}x=-\frac{5}{2}
2-ৰ দ্বাৰা হৰণ কৰিলে 2-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=-\frac{5}{2}+\left(-\frac{7}{4}\right)^{2}
-\frac{7}{2} হৰণ কৰক, -\frac{7}{4} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -\frac{7}{4}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-\frac{7}{2}x+\frac{49}{16}=-\frac{5}{2}+\frac{49}{16}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি -\frac{7}{4} বৰ্গ কৰক৷
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{9}{16}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{49}{16} লৈ -\frac{5}{2} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
\left(x-\frac{7}{4}\right)^{2}=\frac{9}{16}
উৎপাদক x^{2}-\frac{7}{2}x+\frac{49}{16} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-\frac{7}{4}=\frac{3}{4} x-\frac{7}{4}=-\frac{3}{4}
সৰলীকৰণ৷
x=\frac{5}{2} x=1
সমীকৰণৰ দুয়োটা দিশতে \frac{7}{4} যোগ কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}