মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

a+b=-5 ab=2\left(-18\right)=-36
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে 2x^{2}+ax+bx-18 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,-36 2,-18 3,-12 4,-9 6,-6
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে ঋণাত্মক সংখ্যাটোৰ যোগাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -36 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-9 b=4
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -5।
\left(2x^{2}-9x\right)+\left(4x-18\right)
2x^{2}-5x-18ক \left(2x^{2}-9x\right)+\left(4x-18\right) হিচাপে পুনৰ লিখক।
x\left(2x-9\right)+2\left(2x-9\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত 2ৰ গুণনীয়ক উলিয়াওক।
\left(2x-9\right)\left(x+2\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম 2x-9ৰ গুণনীয়ক উলিয়াওক।
x=\frac{9}{2} x=-2
সমীকৰণ উলিয়াবলৈ, 2x-9=0 আৰু x+2=0 সমাধান কৰক।
2x^{2}-5x-18=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\left(-18\right)}}{2\times 2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 2, b-ৰ বাবে -5, c-ৰ বাবে -18 চাবষ্টিটিউট৷
x=\frac{-\left(-5\right)±\sqrt{25-4\times 2\left(-18\right)}}{2\times 2}
বৰ্গ -5৷
x=\frac{-\left(-5\right)±\sqrt{25-8\left(-18\right)}}{2\times 2}
-4 বাৰ 2 পুৰণ কৰক৷
x=\frac{-\left(-5\right)±\sqrt{25+144}}{2\times 2}
-8 বাৰ -18 পুৰণ কৰক৷
x=\frac{-\left(-5\right)±\sqrt{169}}{2\times 2}
144 লৈ 25 যোগ কৰক৷
x=\frac{-\left(-5\right)±13}{2\times 2}
169-ৰ বৰ্গমূল লওক৷
x=\frac{5±13}{2\times 2}
-5ৰ বিপৰীত হৈছে 5৷
x=\frac{5±13}{4}
2 বাৰ 2 পুৰণ কৰক৷
x=\frac{18}{4}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{5±13}{4} সমাধান কৰক৷ 13 লৈ 5 যোগ কৰক৷
x=\frac{9}{2}
2 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{18}{4} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=-\frac{8}{4}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{5±13}{4} সমাধান কৰক৷ 5-ৰ পৰা 13 বিয়োগ কৰক৷
x=-2
4-ৰ দ্বাৰা -8 হৰণ কৰক৷
x=\frac{9}{2} x=-2
সমীকৰণটো এতিয়া সমাধান হৈছে৷
2x^{2}-5x-18=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
2x^{2}-5x-18-\left(-18\right)=-\left(-18\right)
সমীকৰণৰ দুয়োটা দিশতে 18 যোগ কৰক৷
2x^{2}-5x=-\left(-18\right)
ইয়াৰ নিজৰ পৰা -18 বিয়োগ কৰিলে 0 থাকে৷
2x^{2}-5x=18
0-ৰ পৰা -18 বিয়োগ কৰক৷
\frac{2x^{2}-5x}{2}=\frac{18}{2}
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}-\frac{5}{2}x=\frac{18}{2}
2-ৰ দ্বাৰা হৰণ কৰিলে 2-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}-\frac{5}{2}x=9
2-ৰ দ্বাৰা 18 হৰণ কৰক৷
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=9+\left(-\frac{5}{4}\right)^{2}
-\frac{5}{2} হৰণ কৰক, -\frac{5}{4} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -\frac{5}{4}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-\frac{5}{2}x+\frac{25}{16}=9+\frac{25}{16}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি -\frac{5}{4} বৰ্গ কৰক৷
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{169}{16}
\frac{25}{16} লৈ 9 যোগ কৰক৷
\left(x-\frac{5}{4}\right)^{2}=\frac{169}{16}
উৎপাদক x^{2}-\frac{5}{2}x+\frac{25}{16} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{169}{16}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-\frac{5}{4}=\frac{13}{4} x-\frac{5}{4}=-\frac{13}{4}
সৰলীকৰণ৷
x=\frac{9}{2} x=-2
সমীকৰণৰ দুয়োটা দিশতে \frac{5}{4} যোগ কৰক৷