মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

x\left(2x-50\right)=0
xৰ গুণনীয়ক উলিয়াওক।
x=0 x=25
সমীকৰণ উলিয়াবলৈ, x=0 আৰু 2x-50=0 সমাধান কৰক।
2x^{2}-50x=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-50\right)±\sqrt{\left(-50\right)^{2}}}{2\times 2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 2, b-ৰ বাবে -50, c-ৰ বাবে 0 চাবষ্টিটিউট৷
x=\frac{-\left(-50\right)±50}{2\times 2}
\left(-50\right)^{2}-ৰ বৰ্গমূল লওক৷
x=\frac{50±50}{2\times 2}
-50ৰ বিপৰীত হৈছে 50৷
x=\frac{50±50}{4}
2 বাৰ 2 পুৰণ কৰক৷
x=\frac{100}{4}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{50±50}{4} সমাধান কৰক৷ 50 লৈ 50 যোগ কৰক৷
x=25
4-ৰ দ্বাৰা 100 হৰণ কৰক৷
x=\frac{0}{4}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{50±50}{4} সমাধান কৰক৷ 50-ৰ পৰা 50 বিয়োগ কৰক৷
x=0
4-ৰ দ্বাৰা 0 হৰণ কৰক৷
x=25 x=0
সমীকৰণটো এতিয়া সমাধান হৈছে৷
2x^{2}-50x=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
\frac{2x^{2}-50x}{2}=\frac{0}{2}
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\left(-\frac{50}{2}\right)x=\frac{0}{2}
2-ৰ দ্বাৰা হৰণ কৰিলে 2-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}-25x=\frac{0}{2}
2-ৰ দ্বাৰা -50 হৰণ কৰক৷
x^{2}-25x=0
2-ৰ দ্বাৰা 0 হৰণ কৰক৷
x^{2}-25x+\left(-\frac{25}{2}\right)^{2}=\left(-\frac{25}{2}\right)^{2}
-25 হৰণ কৰক, -\frac{25}{2} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -\frac{25}{2}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-25x+\frac{625}{4}=\frac{625}{4}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি -\frac{25}{2} বৰ্গ কৰক৷
\left(x-\frac{25}{2}\right)^{2}=\frac{625}{4}
উৎপাদক x^{2}-25x+\frac{625}{4} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-\frac{25}{2}\right)^{2}}=\sqrt{\frac{625}{4}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-\frac{25}{2}=\frac{25}{2} x-\frac{25}{2}=-\frac{25}{2}
সৰলীকৰণ৷
x=25 x=0
সমীকৰণৰ দুয়োটা দিশতে \frac{25}{2} যোগ কৰক৷