x-ৰ বাবে সমাধান কৰক
x = -\frac{33}{2} = -16\frac{1}{2} = -16.5
x=16
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
a+b=1 ab=2\left(-528\right)=-1056
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে 2x^{2}+ax+bx-528 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,1056 -2,528 -3,352 -4,264 -6,176 -8,132 -11,96 -12,88 -16,66 -22,48 -24,44 -32,33
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে যোগাত্মক সংখ্যাটোৰ ঋণাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -1056 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1+1056=1055 -2+528=526 -3+352=349 -4+264=260 -6+176=170 -8+132=124 -11+96=85 -12+88=76 -16+66=50 -22+48=26 -24+44=20 -32+33=1
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-32 b=33
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 1।
\left(2x^{2}-32x\right)+\left(33x-528\right)
2x^{2}+x-528ক \left(2x^{2}-32x\right)+\left(33x-528\right) হিচাপে পুনৰ লিখক।
2x\left(x-16\right)+33\left(x-16\right)
প্ৰথম গোটত 2x আৰু দ্বিতীয় গোটত 33ৰ গুণনীয়ক উলিয়াওক।
\left(x-16\right)\left(2x+33\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-16ৰ গুণনীয়ক উলিয়াওক।
x=16 x=-\frac{33}{2}
সমীকৰণ উলিয়াবলৈ, x-16=0 আৰু 2x+33=0 সমাধান কৰক।
2x^{2}+x-528=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-1±\sqrt{1^{2}-4\times 2\left(-528\right)}}{2\times 2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 2, b-ৰ বাবে 1, c-ৰ বাবে -528 চাবষ্টিটিউট৷
x=\frac{-1±\sqrt{1-4\times 2\left(-528\right)}}{2\times 2}
বৰ্গ 1৷
x=\frac{-1±\sqrt{1-8\left(-528\right)}}{2\times 2}
-4 বাৰ 2 পুৰণ কৰক৷
x=\frac{-1±\sqrt{1+4224}}{2\times 2}
-8 বাৰ -528 পুৰণ কৰক৷
x=\frac{-1±\sqrt{4225}}{2\times 2}
4224 লৈ 1 যোগ কৰক৷
x=\frac{-1±65}{2\times 2}
4225-ৰ বৰ্গমূল লওক৷
x=\frac{-1±65}{4}
2 বাৰ 2 পুৰণ কৰক৷
x=\frac{64}{4}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-1±65}{4} সমাধান কৰক৷ 65 লৈ -1 যোগ কৰক৷
x=16
4-ৰ দ্বাৰা 64 হৰণ কৰক৷
x=-\frac{66}{4}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-1±65}{4} সমাধান কৰক৷ -1-ৰ পৰা 65 বিয়োগ কৰক৷
x=-\frac{33}{2}
2 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{-66}{4} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=16 x=-\frac{33}{2}
সমীকৰণটো এতিয়া সমাধান হৈছে৷
2x^{2}+x-528=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
2x^{2}+x-528-\left(-528\right)=-\left(-528\right)
সমীকৰণৰ দুয়োটা দিশতে 528 যোগ কৰক৷
2x^{2}+x=-\left(-528\right)
ইয়াৰ নিজৰ পৰা -528 বিয়োগ কৰিলে 0 থাকে৷
2x^{2}+x=528
0-ৰ পৰা -528 বিয়োগ কৰক৷
\frac{2x^{2}+x}{2}=\frac{528}{2}
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\frac{1}{2}x=\frac{528}{2}
2-ৰ দ্বাৰা হৰণ কৰিলে 2-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}+\frac{1}{2}x=264
2-ৰ দ্বাৰা 528 হৰণ কৰক৷
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=264+\left(\frac{1}{4}\right)^{2}
\frac{1}{2} হৰণ কৰক, \frac{1}{4} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে \frac{1}{4}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}+\frac{1}{2}x+\frac{1}{16}=264+\frac{1}{16}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি \frac{1}{4} বৰ্গ কৰক৷
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{4225}{16}
\frac{1}{16} লৈ 264 যোগ কৰক৷
\left(x+\frac{1}{4}\right)^{2}=\frac{4225}{16}
উৎপাদক x^{2}+\frac{1}{2}x+\frac{1}{16} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{4225}{16}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x+\frac{1}{4}=\frac{65}{4} x+\frac{1}{4}=-\frac{65}{4}
সৰলীকৰণ৷
x=16 x=-\frac{33}{2}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{1}{4} বিয়োগ কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}