মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

2x^{2}+x-3=0
দুয়োটা দিশৰ পৰা 3 বিয়োগ কৰক৷
a+b=1 ab=2\left(-3\right)=-6
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে 2x^{2}+ax+bx-3 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,6 -2,3
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে যোগাত্মক সংখ্যাটোৰ ঋণাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -6 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1+6=5 -2+3=1
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-2 b=3
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 1।
\left(2x^{2}-2x\right)+\left(3x-3\right)
2x^{2}+x-3ক \left(2x^{2}-2x\right)+\left(3x-3\right) হিচাপে পুনৰ লিখক।
2x\left(x-1\right)+3\left(x-1\right)
প্ৰথম গোটত 2x আৰু দ্বিতীয় গোটত 3ৰ গুণনীয়ক উলিয়াওক।
\left(x-1\right)\left(2x+3\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-1ৰ গুণনীয়ক উলিয়াওক।
x=1 x=-\frac{3}{2}
সমীকৰণ উলিয়াবলৈ, x-1=0 আৰু 2x+3=0 সমাধান কৰক।
2x^{2}+x=3
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
2x^{2}+x-3=3-3
সমীকৰণৰ দুয়োটা দিশৰ পৰা 3 বিয়োগ কৰক৷
2x^{2}+x-3=0
ইয়াৰ নিজৰ পৰা 3 বিয়োগ কৰিলে 0 থাকে৷
x=\frac{-1±\sqrt{1^{2}-4\times 2\left(-3\right)}}{2\times 2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 2, b-ৰ বাবে 1, c-ৰ বাবে -3 চাবষ্টিটিউট৷
x=\frac{-1±\sqrt{1-4\times 2\left(-3\right)}}{2\times 2}
বৰ্গ 1৷
x=\frac{-1±\sqrt{1-8\left(-3\right)}}{2\times 2}
-4 বাৰ 2 পুৰণ কৰক৷
x=\frac{-1±\sqrt{1+24}}{2\times 2}
-8 বাৰ -3 পুৰণ কৰক৷
x=\frac{-1±\sqrt{25}}{2\times 2}
24 লৈ 1 যোগ কৰক৷
x=\frac{-1±5}{2\times 2}
25-ৰ বৰ্গমূল লওক৷
x=\frac{-1±5}{4}
2 বাৰ 2 পুৰণ কৰক৷
x=\frac{4}{4}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-1±5}{4} সমাধান কৰক৷ 5 লৈ -1 যোগ কৰক৷
x=1
4-ৰ দ্বাৰা 4 হৰণ কৰক৷
x=-\frac{6}{4}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-1±5}{4} সমাধান কৰক৷ -1-ৰ পৰা 5 বিয়োগ কৰক৷
x=-\frac{3}{2}
2 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{-6}{4} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=1 x=-\frac{3}{2}
সমীকৰণটো এতিয়া সমাধান হৈছে৷
2x^{2}+x=3
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
\frac{2x^{2}+x}{2}=\frac{3}{2}
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\frac{1}{2}x=\frac{3}{2}
2-ৰ দ্বাৰা হৰণ কৰিলে 2-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\frac{3}{2}+\left(\frac{1}{4}\right)^{2}
\frac{1}{2} হৰণ কৰক, \frac{1}{4} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে \frac{1}{4}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{3}{2}+\frac{1}{16}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি \frac{1}{4} বৰ্গ কৰক৷
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{25}{16}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{1}{16} লৈ \frac{3}{2} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
\left(x+\frac{1}{4}\right)^{2}=\frac{25}{16}
উৎপাদক x^{2}+\frac{1}{2}x+\frac{1}{16} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x+\frac{1}{4}=\frac{5}{4} x+\frac{1}{4}=-\frac{5}{4}
সৰলীকৰণ৷
x=1 x=-\frac{3}{2}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{1}{4} বিয়োগ কৰক৷