মুখ্য সমললৈ এৰি যাওক
কাৰক
Tick mark Image
মূল্যায়ন
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

2\left(x^{2}+7x-8\right)
2ৰ গুণনীয়ক উলিয়াওক।
a+b=7 ab=1\left(-8\right)=-8
x^{2}+7x-8 বিবেচনা কৰক। এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো x^{2}+ax+bx-8 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,8 -2,4
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে যোগাত্মক সংখ্যাটোৰ ঋণাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -8 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1+8=7 -2+4=2
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-1 b=8
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 7।
\left(x^{2}-x\right)+\left(8x-8\right)
x^{2}+7x-8ক \left(x^{2}-x\right)+\left(8x-8\right) হিচাপে পুনৰ লিখক।
x\left(x-1\right)+8\left(x-1\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত 8ৰ গুণনীয়ক উলিয়াওক।
\left(x-1\right)\left(x+8\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-1ৰ গুণনীয়ক উলিয়াওক।
2\left(x-1\right)\left(x+8\right)
সম্পূৰ্ণ উৎপাদক উলিওৱা অভিব্যক্তি পুনৰ লিখক।
2x^{2}+14x-16=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
x=\frac{-14±\sqrt{14^{2}-4\times 2\left(-16\right)}}{2\times 2}
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-14±\sqrt{196-4\times 2\left(-16\right)}}{2\times 2}
বৰ্গ 14৷
x=\frac{-14±\sqrt{196-8\left(-16\right)}}{2\times 2}
-4 বাৰ 2 পুৰণ কৰক৷
x=\frac{-14±\sqrt{196+128}}{2\times 2}
-8 বাৰ -16 পুৰণ কৰক৷
x=\frac{-14±\sqrt{324}}{2\times 2}
128 লৈ 196 যোগ কৰক৷
x=\frac{-14±18}{2\times 2}
324-ৰ বৰ্গমূল লওক৷
x=\frac{-14±18}{4}
2 বাৰ 2 পুৰণ কৰক৷
x=\frac{4}{4}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-14±18}{4} সমাধান কৰক৷ 18 লৈ -14 যোগ কৰক৷
x=1
4-ৰ দ্বাৰা 4 হৰণ কৰক৷
x=-\frac{32}{4}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-14±18}{4} সমাধান কৰক৷ -14-ৰ পৰা 18 বিয়োগ কৰক৷
x=-8
4-ৰ দ্বাৰা -32 হৰণ কৰক৷
2x^{2}+14x-16=2\left(x-1\right)\left(x-\left(-8\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যৱহাৰ কৰিলে মূল উপাদান হয়৷ x_{1}ৰ বাবে 1 আৰু x_{2}ৰ বাবে -8 বিকল্প৷
2x^{2}+14x-16=2\left(x-1\right)\left(x+8\right)
প্ৰপত্ৰ p-\left(-q\right) ৰ পৰা p+q লৈ সকলো এক্সপ্ৰেশ্বন সৰলীকৃত কৰক৷