মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

17=1+\left(x-1\right)^{2}
\left(x-1\right)^{2} লাভ কৰিবৰ বাবে x-1 আৰু x-1 পুৰণ কৰক৷
17=1+x^{2}-2x+1
\left(x-1\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ব্যৱহাৰ কৰক৷
17=2+x^{2}-2x
2 লাভ কৰিবৰ বাবে 1 আৰু 1 যোগ কৰক৷
2+x^{2}-2x=17
কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
2+x^{2}-2x-17=0
দুয়োটা দিশৰ পৰা 17 বিয়োগ কৰক৷
-15+x^{2}-2x=0
-15 লাভ কৰিবলৈ 2-ৰ পৰা 17 বিয়োগ কৰক৷
x^{2}-2x-15=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-15\right)}}{2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 1, b-ৰ বাবে -2, c-ৰ বাবে -15 চাবষ্টিটিউট৷
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-15\right)}}{2}
বৰ্গ -2৷
x=\frac{-\left(-2\right)±\sqrt{4+60}}{2}
-4 বাৰ -15 পুৰণ কৰক৷
x=\frac{-\left(-2\right)±\sqrt{64}}{2}
60 লৈ 4 যোগ কৰক৷
x=\frac{-\left(-2\right)±8}{2}
64-ৰ বৰ্গমূল লওক৷
x=\frac{2±8}{2}
-2ৰ বিপৰীত হৈছে 2৷
x=\frac{10}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{2±8}{2} সমাধান কৰক৷ 8 লৈ 2 যোগ কৰক৷
x=5
2-ৰ দ্বাৰা 10 হৰণ কৰক৷
x=-\frac{6}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{2±8}{2} সমাধান কৰক৷ 2-ৰ পৰা 8 বিয়োগ কৰক৷
x=-3
2-ৰ দ্বাৰা -6 হৰণ কৰক৷
x=5 x=-3
সমীকৰণটো এতিয়া সমাধান হৈছে৷
17=1+\left(x-1\right)^{2}
\left(x-1\right)^{2} লাভ কৰিবৰ বাবে x-1 আৰু x-1 পুৰণ কৰক৷
17=1+x^{2}-2x+1
\left(x-1\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ব্যৱহাৰ কৰক৷
17=2+x^{2}-2x
2 লাভ কৰিবৰ বাবে 1 আৰু 1 যোগ কৰক৷
2+x^{2}-2x=17
কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
x^{2}-2x=17-2
দুয়োটা দিশৰ পৰা 2 বিয়োগ কৰক৷
x^{2}-2x=15
15 লাভ কৰিবলৈ 17-ৰ পৰা 2 বিয়োগ কৰক৷
x^{2}-2x+1=15+1
-2 হৰণ কৰক, -1 লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -1ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-2x+1=16
1 লৈ 15 যোগ কৰক৷
\left(x-1\right)^{2}=16
উৎপাদক x^{2}-2x+1 । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-1\right)^{2}}=\sqrt{16}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-1=4 x-1=-4
সৰলীকৰণ৷
x=5 x=-3
সমীকৰণৰ দুয়োটা দিশতে 1 যোগ কৰক৷