মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

16x-16-x^{2}=8x
দুয়োটা দিশৰ পৰা x^{2} বিয়োগ কৰক৷
16x-16-x^{2}-8x=0
দুয়োটা দিশৰ পৰা 8x বিয়োগ কৰক৷
8x-16-x^{2}=0
8x লাভ কৰিবলৈ 16x আৰু -8x একত্ৰ কৰক৷
-x^{2}+8x-16=0
এটা মান্য ৰূপত বহুৱাবলৈ বহুপদ পুনঃব্যৱস্থিত কৰক৷ সৰ্বোচ্চৰ পৰা নিম্ন পাৱাৰ ক্ৰমত টাৰ্মসমূহ ৰাখক৷
a+b=8 ab=-\left(-16\right)=16
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে -x^{2}+ax+bx-16 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,16 2,8 4,4
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে a আৰু b দুয়োটাই যোগাত্মক। যিবোৰ যোৰাই গুণফল 16 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1+16=17 2+8=10 4+4=8
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=4 b=4
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 8।
\left(-x^{2}+4x\right)+\left(4x-16\right)
-x^{2}+8x-16ক \left(-x^{2}+4x\right)+\left(4x-16\right) হিচাপে পুনৰ লিখক।
-x\left(x-4\right)+4\left(x-4\right)
প্ৰথম গোটত -x আৰু দ্বিতীয় গোটত 4ৰ গুণনীয়ক উলিয়াওক।
\left(x-4\right)\left(-x+4\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-4ৰ গুণনীয়ক উলিয়াওক।
x=4 x=4
সমীকৰণ উলিয়াবলৈ, x-4=0 আৰু -x+4=0 সমাধান কৰক।
16x-16-x^{2}=8x
দুয়োটা দিশৰ পৰা x^{2} বিয়োগ কৰক৷
16x-16-x^{2}-8x=0
দুয়োটা দিশৰ পৰা 8x বিয়োগ কৰক৷
8x-16-x^{2}=0
8x লাভ কৰিবলৈ 16x আৰু -8x একত্ৰ কৰক৷
-x^{2}+8x-16=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-8±\sqrt{8^{2}-4\left(-1\right)\left(-16\right)}}{2\left(-1\right)}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে -1, b-ৰ বাবে 8, c-ৰ বাবে -16 চাবষ্টিটিউট৷
x=\frac{-8±\sqrt{64-4\left(-1\right)\left(-16\right)}}{2\left(-1\right)}
বৰ্গ 8৷
x=\frac{-8±\sqrt{64+4\left(-16\right)}}{2\left(-1\right)}
-4 বাৰ -1 পুৰণ কৰক৷
x=\frac{-8±\sqrt{64-64}}{2\left(-1\right)}
4 বাৰ -16 পুৰণ কৰক৷
x=\frac{-8±\sqrt{0}}{2\left(-1\right)}
-64 লৈ 64 যোগ কৰক৷
x=-\frac{8}{2\left(-1\right)}
0-ৰ বৰ্গমূল লওক৷
x=-\frac{8}{-2}
2 বাৰ -1 পুৰণ কৰক৷
x=4
-2-ৰ দ্বাৰা -8 হৰণ কৰক৷
16x-16-x^{2}=8x
দুয়োটা দিশৰ পৰা x^{2} বিয়োগ কৰক৷
16x-16-x^{2}-8x=0
দুয়োটা দিশৰ পৰা 8x বিয়োগ কৰক৷
8x-16-x^{2}=0
8x লাভ কৰিবলৈ 16x আৰু -8x একত্ৰ কৰক৷
8x-x^{2}=16
উভয় কাষে 16 যোগ কৰক। শূণ্যৰ লগত যিকোনো যোগ কৰিলে একেটাই দিয়ে৷
-x^{2}+8x=16
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
\frac{-x^{2}+8x}{-1}=\frac{16}{-1}
-1-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\frac{8}{-1}x=\frac{16}{-1}
-1-ৰ দ্বাৰা হৰণ কৰিলে -1-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}-8x=\frac{16}{-1}
-1-ৰ দ্বাৰা 8 হৰণ কৰক৷
x^{2}-8x=-16
-1-ৰ দ্বাৰা 16 হৰণ কৰক৷
x^{2}-8x+\left(-4\right)^{2}=-16+\left(-4\right)^{2}
-8 হৰণ কৰক, -4 লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -4ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-8x+16=-16+16
বৰ্গ -4৷
x^{2}-8x+16=0
16 লৈ -16 যোগ কৰক৷
\left(x-4\right)^{2}=0
উৎপাদক x^{2}-8x+16 । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-4\right)^{2}}=\sqrt{0}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-4=0 x-4=0
সৰলীকৰণ৷
x=4 x=4
সমীকৰণৰ দুয়োটা দিশতে 4 যোগ কৰক৷
x=4
সমীকৰণটো এতিয়া সমাধান হৈছে৷ সমাধান একে হৈছে৷