x-ৰ বাবে সমাধান কৰক
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
16=4x^{2}-4x+1
\left(2x-1\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ব্যৱহাৰ কৰক৷
4x^{2}-4x+1=16
কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
4x^{2}-4x+1-16=0
দুয়োটা দিশৰ পৰা 16 বিয়োগ কৰক৷
4x^{2}-4x-15=0
-15 লাভ কৰিবলৈ 1-ৰ পৰা 16 বিয়োগ কৰক৷
a+b=-4 ab=4\left(-15\right)=-60
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে 4x^{2}+ax+bx-15 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে ঋণাত্মক সংখ্যাটোৰ যোগাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -60 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-10 b=6
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -4।
\left(4x^{2}-10x\right)+\left(6x-15\right)
4x^{2}-4x-15ক \left(4x^{2}-10x\right)+\left(6x-15\right) হিচাপে পুনৰ লিখক।
2x\left(2x-5\right)+3\left(2x-5\right)
প্ৰথম গোটত 2x আৰু দ্বিতীয় গোটত 3ৰ গুণনীয়ক উলিয়াওক।
\left(2x-5\right)\left(2x+3\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম 2x-5ৰ গুণনীয়ক উলিয়াওক।
x=\frac{5}{2} x=-\frac{3}{2}
সমীকৰণ উলিয়াবলৈ, 2x-5=0 আৰু 2x+3=0 সমাধান কৰক।
16=4x^{2}-4x+1
\left(2x-1\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ব্যৱহাৰ কৰক৷
4x^{2}-4x+1=16
কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
4x^{2}-4x+1-16=0
দুয়োটা দিশৰ পৰা 16 বিয়োগ কৰক৷
4x^{2}-4x-15=0
-15 লাভ কৰিবলৈ 1-ৰ পৰা 16 বিয়োগ কৰক৷
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4\left(-15\right)}}{2\times 4}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 4, b-ৰ বাবে -4, c-ৰ বাবে -15 চাবষ্টিটিউট৷
x=\frac{-\left(-4\right)±\sqrt{16-4\times 4\left(-15\right)}}{2\times 4}
বৰ্গ -4৷
x=\frac{-\left(-4\right)±\sqrt{16-16\left(-15\right)}}{2\times 4}
-4 বাৰ 4 পুৰণ কৰক৷
x=\frac{-\left(-4\right)±\sqrt{16+240}}{2\times 4}
-16 বাৰ -15 পুৰণ কৰক৷
x=\frac{-\left(-4\right)±\sqrt{256}}{2\times 4}
240 লৈ 16 যোগ কৰক৷
x=\frac{-\left(-4\right)±16}{2\times 4}
256-ৰ বৰ্গমূল লওক৷
x=\frac{4±16}{2\times 4}
-4ৰ বিপৰীত হৈছে 4৷
x=\frac{4±16}{8}
2 বাৰ 4 পুৰণ কৰক৷
x=\frac{20}{8}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{4±16}{8} সমাধান কৰক৷ 16 লৈ 4 যোগ কৰক৷
x=\frac{5}{2}
4 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{20}{8} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=-\frac{12}{8}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{4±16}{8} সমাধান কৰক৷ 4-ৰ পৰা 16 বিয়োগ কৰক৷
x=-\frac{3}{2}
4 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{-12}{8} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=\frac{5}{2} x=-\frac{3}{2}
সমীকৰণটো এতিয়া সমাধান হৈছে৷
16=4x^{2}-4x+1
\left(2x-1\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ব্যৱহাৰ কৰক৷
4x^{2}-4x+1=16
কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
4x^{2}-4x=16-1
দুয়োটা দিশৰ পৰা 1 বিয়োগ কৰক৷
4x^{2}-4x=15
15 লাভ কৰিবলৈ 16-ৰ পৰা 1 বিয়োগ কৰক৷
\frac{4x^{2}-4x}{4}=\frac{15}{4}
4-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\left(-\frac{4}{4}\right)x=\frac{15}{4}
4-ৰ দ্বাৰা হৰণ কৰিলে 4-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}-x=\frac{15}{4}
4-ৰ দ্বাৰা -4 হৰণ কৰক৷
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{15}{4}+\left(-\frac{1}{2}\right)^{2}
-1 হৰণ কৰক, -\frac{1}{2} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -\frac{1}{2}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-x+\frac{1}{4}=\frac{15+1}{4}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি -\frac{1}{2} বৰ্গ কৰক৷
x^{2}-x+\frac{1}{4}=4
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{1}{4} লৈ \frac{15}{4} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
\left(x-\frac{1}{2}\right)^{2}=4
উৎপাদক x^{2}-x+\frac{1}{4} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{4}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-\frac{1}{2}=2 x-\frac{1}{2}=-2
সৰলীকৰণ৷
x=\frac{5}{2} x=-\frac{3}{2}
সমীকৰণৰ দুয়োটা দিশতে \frac{1}{2} যোগ কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}