মুখ্য সমললৈ এৰি যাওক
কাৰক
Tick mark Image
মূল্যায়ন
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

a+b=7 ab=12\left(-12\right)=-144
এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো 12x^{2}+ax+bx-12 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,144 -2,72 -3,48 -4,36 -6,24 -8,18 -9,16 -12,12
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে যোগাত্মক সংখ্যাটোৰ ঋণাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -144 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1+144=143 -2+72=70 -3+48=45 -4+36=32 -6+24=18 -8+18=10 -9+16=7 -12+12=0
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-9 b=16
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 7।
\left(12x^{2}-9x\right)+\left(16x-12\right)
12x^{2}+7x-12ক \left(12x^{2}-9x\right)+\left(16x-12\right) হিচাপে পুনৰ লিখক।
3x\left(4x-3\right)+4\left(4x-3\right)
প্ৰথম গোটত 3x আৰু দ্বিতীয় গোটত 4ৰ গুণনীয়ক উলিয়াওক।
\left(4x-3\right)\left(3x+4\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম 4x-3ৰ গুণনীয়ক উলিয়াওক।
12x^{2}+7x-12=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
x=\frac{-7±\sqrt{7^{2}-4\times 12\left(-12\right)}}{2\times 12}
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-7±\sqrt{49-4\times 12\left(-12\right)}}{2\times 12}
বৰ্গ 7৷
x=\frac{-7±\sqrt{49-48\left(-12\right)}}{2\times 12}
-4 বাৰ 12 পুৰণ কৰক৷
x=\frac{-7±\sqrt{49+576}}{2\times 12}
-48 বাৰ -12 পুৰণ কৰক৷
x=\frac{-7±\sqrt{625}}{2\times 12}
576 লৈ 49 যোগ কৰক৷
x=\frac{-7±25}{2\times 12}
625-ৰ বৰ্গমূল লওক৷
x=\frac{-7±25}{24}
2 বাৰ 12 পুৰণ কৰক৷
x=\frac{18}{24}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-7±25}{24} সমাধান কৰক৷ 25 লৈ -7 যোগ কৰক৷
x=\frac{3}{4}
6 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{18}{24} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=-\frac{32}{24}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-7±25}{24} সমাধান কৰক৷ -7-ৰ পৰা 25 বিয়োগ কৰক৷
x=-\frac{4}{3}
8 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{-32}{24} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
12x^{2}+7x-12=12\left(x-\frac{3}{4}\right)\left(x-\left(-\frac{4}{3}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যৱহাৰ কৰিলে মূল উপাদান হয়৷ x_{1}ৰ বাবে \frac{3}{4} আৰু x_{2}ৰ বাবে -\frac{4}{3} বিকল্প৷
12x^{2}+7x-12=12\left(x-\frac{3}{4}\right)\left(x+\frac{4}{3}\right)
প্ৰপত্ৰ p-\left(-q\right) ৰ পৰা p+q লৈ সকলো এক্সপ্ৰেশ্বন সৰলীকৃত কৰক৷
12x^{2}+7x-12=12\times \frac{4x-3}{4}\left(x+\frac{4}{3}\right)
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক বিয়োগ কৰি x-ৰ পৰা \frac{3}{4} বিয়োগ কৰক৷ ইয়াৰ পিছত ভাজকক সৰ্বনিম্ন পদৰ পৰা যদি সম্ভৱ হয়, তেতিয়া হ্ৰাস কৰক৷
12x^{2}+7x-12=12\times \frac{4x-3}{4}\times \frac{3x+4}{3}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি x লৈ \frac{4}{3} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
12x^{2}+7x-12=12\times \frac{\left(4x-3\right)\left(3x+4\right)}{4\times 3}
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি \frac{4x-3}{4} বাৰ \frac{3x+4}{3} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
12x^{2}+7x-12=12\times \frac{\left(4x-3\right)\left(3x+4\right)}{12}
4 বাৰ 3 পুৰণ কৰক৷
12x^{2}+7x-12=\left(4x-3\right)\left(3x+4\right)
12 আৰু 12-ত সৰ্বাধিক পৰিচিত কাৰক 12 বাতিল কৰাটো বাদ দিয়ক৷