মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

x\left(10x-12\right)=0
xৰ গুণনীয়ক উলিয়াওক।
x=0 x=\frac{6}{5}
সমীকৰণ উলিয়াবলৈ, x=0 আৰু 10x-12=0 সমাধান কৰক।
10x^{2}-12x=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}}}{2\times 10}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 10, b-ৰ বাবে -12, c-ৰ বাবে 0 চাবষ্টিটিউট৷
x=\frac{-\left(-12\right)±12}{2\times 10}
\left(-12\right)^{2}-ৰ বৰ্গমূল লওক৷
x=\frac{12±12}{2\times 10}
-12ৰ বিপৰীত হৈছে 12৷
x=\frac{12±12}{20}
2 বাৰ 10 পুৰণ কৰক৷
x=\frac{24}{20}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{12±12}{20} সমাধান কৰক৷ 12 লৈ 12 যোগ কৰক৷
x=\frac{6}{5}
4 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{24}{20} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=\frac{0}{20}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{12±12}{20} সমাধান কৰক৷ 12-ৰ পৰা 12 বিয়োগ কৰক৷
x=0
20-ৰ দ্বাৰা 0 হৰণ কৰক৷
x=\frac{6}{5} x=0
সমীকৰণটো এতিয়া সমাধান হৈছে৷
10x^{2}-12x=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
\frac{10x^{2}-12x}{10}=\frac{0}{10}
10-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\left(-\frac{12}{10}\right)x=\frac{0}{10}
10-ৰ দ্বাৰা হৰণ কৰিলে 10-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}-\frac{6}{5}x=\frac{0}{10}
2 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{-12}{10} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x^{2}-\frac{6}{5}x=0
10-ৰ দ্বাৰা 0 হৰণ কৰক৷
x^{2}-\frac{6}{5}x+\left(-\frac{3}{5}\right)^{2}=\left(-\frac{3}{5}\right)^{2}
-\frac{6}{5} হৰণ কৰক, -\frac{3}{5} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -\frac{3}{5}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-\frac{6}{5}x+\frac{9}{25}=\frac{9}{25}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি -\frac{3}{5} বৰ্গ কৰক৷
\left(x-\frac{3}{5}\right)^{2}=\frac{9}{25}
উৎপাদক x^{2}-\frac{6}{5}x+\frac{9}{25} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-\frac{3}{5}\right)^{2}}=\sqrt{\frac{9}{25}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-\frac{3}{5}=\frac{3}{5} x-\frac{3}{5}=-\frac{3}{5}
সৰলীকৰণ৷
x=\frac{6}{5} x=0
সমীকৰণৰ দুয়োটা দিশতে \frac{3}{5} যোগ কৰক৷