x-ৰ বাবে সমাধান কৰক
x=-15
x=12
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
10\times 18=x\left(3+x\right)
18 লাভ কৰিবৰ বাবে 10 আৰু 8 যোগ কৰক৷
180=x\left(3+x\right)
180 লাভ কৰিবৰ বাবে 10 আৰু 18 পুৰণ কৰক৷
180=3x+x^{2}
xক 3+xৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
3x+x^{2}=180
কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
3x+x^{2}-180=0
দুয়োটা দিশৰ পৰা 180 বিয়োগ কৰক৷
x^{2}+3x-180=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-3±\sqrt{3^{2}-4\left(-180\right)}}{2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 1, b-ৰ বাবে 3, c-ৰ বাবে -180 চাবষ্টিটিউট৷
x=\frac{-3±\sqrt{9-4\left(-180\right)}}{2}
বৰ্গ 3৷
x=\frac{-3±\sqrt{9+720}}{2}
-4 বাৰ -180 পুৰণ কৰক৷
x=\frac{-3±\sqrt{729}}{2}
720 লৈ 9 যোগ কৰক৷
x=\frac{-3±27}{2}
729-ৰ বৰ্গমূল লওক৷
x=\frac{24}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-3±27}{2} সমাধান কৰক৷ 27 লৈ -3 যোগ কৰক৷
x=12
2-ৰ দ্বাৰা 24 হৰণ কৰক৷
x=-\frac{30}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-3±27}{2} সমাধান কৰক৷ -3-ৰ পৰা 27 বিয়োগ কৰক৷
x=-15
2-ৰ দ্বাৰা -30 হৰণ কৰক৷
x=12 x=-15
সমীকৰণটো এতিয়া সমাধান হৈছে৷
10\times 18=x\left(3+x\right)
18 লাভ কৰিবৰ বাবে 10 আৰু 8 যোগ কৰক৷
180=x\left(3+x\right)
180 লাভ কৰিবৰ বাবে 10 আৰু 18 পুৰণ কৰক৷
180=3x+x^{2}
xক 3+xৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
3x+x^{2}=180
কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
x^{2}+3x=180
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=180+\left(\frac{3}{2}\right)^{2}
3 হৰণ কৰক, \frac{3}{2} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে \frac{3}{2}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}+3x+\frac{9}{4}=180+\frac{9}{4}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি \frac{3}{2} বৰ্গ কৰক৷
x^{2}+3x+\frac{9}{4}=\frac{729}{4}
\frac{9}{4} লৈ 180 যোগ কৰক৷
\left(x+\frac{3}{2}\right)^{2}=\frac{729}{4}
উৎপাদক x^{2}+3x+\frac{9}{4} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{729}{4}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x+\frac{3}{2}=\frac{27}{2} x+\frac{3}{2}=-\frac{27}{2}
সৰলীকৰণ৷
x=12 x=-15
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{3}{2} বিয়োগ কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}