মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

1+3x-3x^{2}=0
3xক 1-xৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
-3x^{2}+3x+1=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-3±\sqrt{3^{2}-4\left(-3\right)}}{2\left(-3\right)}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে -3, b-ৰ বাবে 3, c-ৰ বাবে 1 চাবষ্টিটিউট৷
x=\frac{-3±\sqrt{9-4\left(-3\right)}}{2\left(-3\right)}
বৰ্গ 3৷
x=\frac{-3±\sqrt{9+12}}{2\left(-3\right)}
-4 বাৰ -3 পুৰণ কৰক৷
x=\frac{-3±\sqrt{21}}{2\left(-3\right)}
12 লৈ 9 যোগ কৰক৷
x=\frac{-3±\sqrt{21}}{-6}
2 বাৰ -3 পুৰণ কৰক৷
x=\frac{\sqrt{21}-3}{-6}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-3±\sqrt{21}}{-6} সমাধান কৰক৷ \sqrt{21} লৈ -3 যোগ কৰক৷
x=-\frac{\sqrt{21}}{6}+\frac{1}{2}
-6-ৰ দ্বাৰা -3+\sqrt{21} হৰণ কৰক৷
x=\frac{-\sqrt{21}-3}{-6}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-3±\sqrt{21}}{-6} সমাধান কৰক৷ -3-ৰ পৰা \sqrt{21} বিয়োগ কৰক৷
x=\frac{\sqrt{21}}{6}+\frac{1}{2}
-6-ৰ দ্বাৰা -3-\sqrt{21} হৰণ কৰক৷
x=-\frac{\sqrt{21}}{6}+\frac{1}{2} x=\frac{\sqrt{21}}{6}+\frac{1}{2}
সমীকৰণটো এতিয়া সমাধান হৈছে৷
1+3x-3x^{2}=0
3xক 1-xৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
3x-3x^{2}=-1
দুয়োটা দিশৰ পৰা 1 বিয়োগ কৰক৷ শূণ্যৰ পৰা যিকোনো বিয়োগ কৰিলে ঋণাত্মকেই দিয়ে৷
-3x^{2}+3x=-1
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
\frac{-3x^{2}+3x}{-3}=-\frac{1}{-3}
-3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\frac{3}{-3}x=-\frac{1}{-3}
-3-ৰ দ্বাৰা হৰণ কৰিলে -3-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}-x=-\frac{1}{-3}
-3-ৰ দ্বাৰা 3 হৰণ কৰক৷
x^{2}-x=\frac{1}{3}
-3-ৰ দ্বাৰা -1 হৰণ কৰক৷
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{1}{3}+\left(-\frac{1}{2}\right)^{2}
-1 হৰণ কৰক, -\frac{1}{2} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -\frac{1}{2}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-x+\frac{1}{4}=\frac{1}{3}+\frac{1}{4}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি -\frac{1}{2} বৰ্গ কৰক৷
x^{2}-x+\frac{1}{4}=\frac{7}{12}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{1}{4} লৈ \frac{1}{3} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
\left(x-\frac{1}{2}\right)^{2}=\frac{7}{12}
উৎপাদক x^{2}-x+\frac{1}{4} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{7}{12}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-\frac{1}{2}=\frac{\sqrt{21}}{6} x-\frac{1}{2}=-\frac{\sqrt{21}}{6}
সৰলীকৰণ৷
x=\frac{\sqrt{21}}{6}+\frac{1}{2} x=-\frac{\sqrt{21}}{6}+\frac{1}{2}
সমীকৰণৰ দুয়োটা দিশতে \frac{1}{2} যোগ কৰক৷