মুখ্য সমললৈ এৰি যাওক
কাৰক
Tick mark Image
মূল্যায়ন
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

a+b=-12 ab=1\times 32=32
এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো x^{2}+ax+bx+32 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,-32 -2,-16 -4,-8
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে a আৰু b দুয়োটাই ঋণাত্মক। যিবোৰ যোৰাই গুণফল 32 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1-32=-33 -2-16=-18 -4-8=-12
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-8 b=-4
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -12।
\left(x^{2}-8x\right)+\left(-4x+32\right)
x^{2}-12x+32ক \left(x^{2}-8x\right)+\left(-4x+32\right) হিচাপে পুনৰ লিখক।
x\left(x-8\right)-4\left(x-8\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত -4ৰ গুণনীয়ক উলিয়াওক।
\left(x-8\right)\left(x-4\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-8ৰ গুণনীয়ক উলিয়াওক।
x^{2}-12x+32=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 32}}{2}
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-12\right)±\sqrt{144-4\times 32}}{2}
বৰ্গ -12৷
x=\frac{-\left(-12\right)±\sqrt{144-128}}{2}
-4 বাৰ 32 পুৰণ কৰক৷
x=\frac{-\left(-12\right)±\sqrt{16}}{2}
-128 লৈ 144 যোগ কৰক৷
x=\frac{-\left(-12\right)±4}{2}
16-ৰ বৰ্গমূল লওক৷
x=\frac{12±4}{2}
-12ৰ বিপৰীত হৈছে 12৷
x=\frac{16}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{12±4}{2} সমাধান কৰক৷ 4 লৈ 12 যোগ কৰক৷
x=8
2-ৰ দ্বাৰা 16 হৰণ কৰক৷
x=\frac{8}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{12±4}{2} সমাধান কৰক৷ 12-ৰ পৰা 4 বিয়োগ কৰক৷
x=4
2-ৰ দ্বাৰা 8 হৰণ কৰক৷
x^{2}-12x+32=\left(x-8\right)\left(x-4\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যৱহাৰ কৰিলে মূল উপাদান হয়৷ x_{1}ৰ বাবে 8 আৰু x_{2}ৰ বাবে 4 বিকল্প৷