কাৰক
\left(c+1\right)\left(c^{22}-c^{21}+c^{20}-c^{19}+c^{18}-c^{17}+c^{16}-c^{15}+c^{14}-c^{13}+c^{12}-c^{11}+c^{10}-c^{9}+c^{8}-c^{7}+c^{6}-c^{5}+c^{4}-c^{3}+c^{2}-c+1\right)
মূল্যায়ন
c^{23}+1
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
c^{23}+1
একেধৰণৰ পদসমূহ পূৰণ বা একত্ৰ কৰক৷
\left(c+1\right)\left(c^{22}-c^{21}+c^{20}-c^{19}+c^{18}-c^{17}+c^{16}-c^{15}+c^{14}-c^{13}+c^{12}-c^{11}+c^{10}-c^{9}+c^{8}-c^{7}+c^{6}-c^{5}+c^{4}-c^{3}+c^{2}-c+1\right)
ৰেশ্যনেল বৰ্গমূল সূত্ৰৰ দ্বাৰা, এটা বহুপদৰ সকলো ৰেশ্যনেল ৰুট \frac{p}{q}ৰ ৰূপত থাকে, য'ত pএ ধ্ৰুৱক ৰাশি 1ক হৰণ কৰে আৰু qএ প্ৰমুখ গুণাংক 1ক হৰণ কৰে। এটা এনেকুৱা বৰ্গমূল হৈছে -1। বহুপদক c+1ৰ দ্বাৰা হৰণ কৰি এইটোৰ উৎপাদক উলিয়াওক। বহুপদ c^{22}-c^{21}+c^{20}-c^{19}+c^{18}-c^{17}+c^{16}-c^{15}+c^{14}-c^{13}+c^{12}-c^{11}+c^{10}-c^{9}+c^{8}-c^{7}+c^{6}-c^{5}+c^{4}-c^{3}+c^{2}-c+1ৰ উৎপাদক উলিওৱা হোৱা নাই যিহেতু ইয়াৰ কোনো ৰেশ্বনেল বৰ্গমূল নাই৷
1+c^{23}
2ৰ পাৱাৰ 1ক গণনা কৰক আৰু 1 লাভ কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}