মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক (জটিল সমাধান)
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

x^{2}-x+156=0
কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
x=\frac{-\left(-1\right)±\sqrt{1-4\times 156}}{2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 1, b-ৰ বাবে -1, c-ৰ বাবে 156 চাবষ্টিটিউট৷
x=\frac{-\left(-1\right)±\sqrt{1-624}}{2}
-4 বাৰ 156 পুৰণ কৰক৷
x=\frac{-\left(-1\right)±\sqrt{-623}}{2}
-624 লৈ 1 যোগ কৰক৷
x=\frac{-\left(-1\right)±\sqrt{623}i}{2}
-623-ৰ বৰ্গমূল লওক৷
x=\frac{1±\sqrt{623}i}{2}
-1ৰ বিপৰীত হৈছে 1৷
x=\frac{1+\sqrt{623}i}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{1±\sqrt{623}i}{2} সমাধান কৰক৷ i\sqrt{623} লৈ 1 যোগ কৰক৷
x=\frac{-\sqrt{623}i+1}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{1±\sqrt{623}i}{2} সমাধান কৰক৷ 1-ৰ পৰা i\sqrt{623} বিয়োগ কৰক৷
x=\frac{1+\sqrt{623}i}{2} x=\frac{-\sqrt{623}i+1}{2}
সমীকৰণটো এতিয়া সমাধান হৈছে৷
x^{2}-x+156=0
কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
x^{2}-x=-156
দুয়োটা দিশৰ পৰা 156 বিয়োগ কৰক৷ শূণ্যৰ পৰা যিকোনো বিয়োগ কৰিলে ঋণাত্মকেই দিয়ে৷
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-156+\left(-\frac{1}{2}\right)^{2}
-1 হৰণ কৰক, -\frac{1}{2} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -\frac{1}{2}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-x+\frac{1}{4}=-156+\frac{1}{4}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি -\frac{1}{2} বৰ্গ কৰক৷
x^{2}-x+\frac{1}{4}=-\frac{623}{4}
\frac{1}{4} লৈ -156 যোগ কৰক৷
\left(x-\frac{1}{2}\right)^{2}=-\frac{623}{4}
উৎপাদক x^{2}-x+\frac{1}{4} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{623}{4}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-\frac{1}{2}=\frac{\sqrt{623}i}{2} x-\frac{1}{2}=-\frac{\sqrt{623}i}{2}
সৰলীকৰণ৷
x=\frac{1+\sqrt{623}i}{2} x=\frac{-\sqrt{623}i+1}{2}
সমীকৰণৰ দুয়োটা দিশতে \frac{1}{2} যোগ কৰক৷