মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

2x^{2}+3x-84=0
কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-84\right)}}{2\times 2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 2, b-ৰ বাবে 3, c-ৰ বাবে -84 চাবষ্টিটিউট৷
x=\frac{-3±\sqrt{9-4\times 2\left(-84\right)}}{2\times 2}
বৰ্গ 3৷
x=\frac{-3±\sqrt{9-8\left(-84\right)}}{2\times 2}
-4 বাৰ 2 পুৰণ কৰক৷
x=\frac{-3±\sqrt{9+672}}{2\times 2}
-8 বাৰ -84 পুৰণ কৰক৷
x=\frac{-3±\sqrt{681}}{2\times 2}
672 লৈ 9 যোগ কৰক৷
x=\frac{-3±\sqrt{681}}{4}
2 বাৰ 2 পুৰণ কৰক৷
x=\frac{\sqrt{681}-3}{4}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-3±\sqrt{681}}{4} সমাধান কৰক৷ \sqrt{681} লৈ -3 যোগ কৰক৷
x=\frac{-\sqrt{681}-3}{4}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-3±\sqrt{681}}{4} সমাধান কৰক৷ -3-ৰ পৰা \sqrt{681} বিয়োগ কৰক৷
x=\frac{\sqrt{681}-3}{4} x=\frac{-\sqrt{681}-3}{4}
সমীকৰণটো এতিয়া সমাধান হৈছে৷
2x^{2}+3x-84=0
কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
2x^{2}+3x=84
উভয় কাষে 84 যোগ কৰক। শূণ্যৰ লগত যিকোনো যোগ কৰিলে একেটাই দিয়ে৷
\frac{2x^{2}+3x}{2}=\frac{84}{2}
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\frac{3}{2}x=\frac{84}{2}
2-ৰ দ্বাৰা হৰণ কৰিলে 2-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}+\frac{3}{2}x=42
2-ৰ দ্বাৰা 84 হৰণ কৰক৷
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=42+\left(\frac{3}{4}\right)^{2}
\frac{3}{2} হৰণ কৰক, \frac{3}{4} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে \frac{3}{4}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}+\frac{3}{2}x+\frac{9}{16}=42+\frac{9}{16}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি \frac{3}{4} বৰ্গ কৰক৷
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{681}{16}
\frac{9}{16} লৈ 42 যোগ কৰক৷
\left(x+\frac{3}{4}\right)^{2}=\frac{681}{16}
উৎপাদক x^{2}+\frac{3}{2}x+\frac{9}{16} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{681}{16}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x+\frac{3}{4}=\frac{\sqrt{681}}{4} x+\frac{3}{4}=-\frac{\sqrt{681}}{4}
সৰলীকৰণ৷
x=\frac{\sqrt{681}-3}{4} x=\frac{-\sqrt{681}-3}{4}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{3}{4} বিয়োগ কৰক৷