মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

-x^{2}+2x+3=0
কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
a+b=2 ab=-3=-3
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে -x^{2}+ax+bx+3 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
a=3 b=-1
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে যোগাত্মক সংখ্যাটোৰ ঋণাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। এনেধৰণৰ একমাত্ৰ যোৰা হৈছে ছিষ্টেম সমাধান।
\left(-x^{2}+3x\right)+\left(-x+3\right)
-x^{2}+2x+3ক \left(-x^{2}+3x\right)+\left(-x+3\right) হিচাপে পুনৰ লিখক।
-x\left(x-3\right)-\left(x-3\right)
প্ৰথম গোটত -x আৰু দ্বিতীয় গোটত -1ৰ গুণনীয়ক উলিয়াওক।
\left(x-3\right)\left(-x-1\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-3ৰ গুণনীয়ক উলিয়াওক।
x=3 x=-1
সমীকৰণ উলিয়াবলৈ, x-3=0 আৰু -x-1=0 সমাধান কৰক।
-x^{2}+2x+3=0
কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে -1, b-ৰ বাবে 2, c-ৰ বাবে 3 চাবষ্টিটিউট৷
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
বৰ্গ 2৷
x=\frac{-2±\sqrt{4+4\times 3}}{2\left(-1\right)}
-4 বাৰ -1 পুৰণ কৰক৷
x=\frac{-2±\sqrt{4+12}}{2\left(-1\right)}
4 বাৰ 3 পুৰণ কৰক৷
x=\frac{-2±\sqrt{16}}{2\left(-1\right)}
12 লৈ 4 যোগ কৰক৷
x=\frac{-2±4}{2\left(-1\right)}
16-ৰ বৰ্গমূল লওক৷
x=\frac{-2±4}{-2}
2 বাৰ -1 পুৰণ কৰক৷
x=\frac{2}{-2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-2±4}{-2} সমাধান কৰক৷ 4 লৈ -2 যোগ কৰক৷
x=-1
-2-ৰ দ্বাৰা 2 হৰণ কৰক৷
x=-\frac{6}{-2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-2±4}{-2} সমাধান কৰক৷ -2-ৰ পৰা 4 বিয়োগ কৰক৷
x=3
-2-ৰ দ্বাৰা -6 হৰণ কৰক৷
x=-1 x=3
সমীকৰণটো এতিয়া সমাধান হৈছে৷
-x^{2}+2x+3=0
কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
-x^{2}+2x=-3
দুয়োটা দিশৰ পৰা 3 বিয়োগ কৰক৷ শূণ্যৰ পৰা যিকোনো বিয়োগ কৰিলে ঋণাত্মকেই দিয়ে৷
\frac{-x^{2}+2x}{-1}=-\frac{3}{-1}
-1-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\frac{2}{-1}x=-\frac{3}{-1}
-1-ৰ দ্বাৰা হৰণ কৰিলে -1-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}-2x=-\frac{3}{-1}
-1-ৰ দ্বাৰা 2 হৰণ কৰক৷
x^{2}-2x=3
-1-ৰ দ্বাৰা -3 হৰণ কৰক৷
x^{2}-2x+1=3+1
-2 হৰণ কৰক, -1 লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -1ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-2x+1=4
1 লৈ 3 যোগ কৰক৷
\left(x-1\right)^{2}=4
উৎপাদক x^{2}-2x+1 । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-1=2 x-1=-2
সৰলীকৰণ৷
x=3 x=-1
সমীকৰণৰ দুয়োটা দিশতে 1 যোগ কৰক৷