মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

a+b=-2 ab=-3\times 5=-15
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে -3x^{2}+ax+bx+5 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,-15 3,-5
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে ঋণাত্মক সংখ্যাটোৰ যোগাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -15 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1-15=-14 3-5=-2
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=3 b=-5
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -2।
\left(-3x^{2}+3x\right)+\left(-5x+5\right)
-3x^{2}-2x+5ক \left(-3x^{2}+3x\right)+\left(-5x+5\right) হিচাপে পুনৰ লিখক।
3x\left(-x+1\right)+5\left(-x+1\right)
প্ৰথম গোটত 3x আৰু দ্বিতীয় গোটত 5ৰ গুণনীয়ক উলিয়াওক।
\left(-x+1\right)\left(3x+5\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম -x+1ৰ গুণনীয়ক উলিয়াওক।
x=1 x=-\frac{5}{3}
সমীকৰণ উলিয়াবলৈ, -x+1=0 আৰু 3x+5=0 সমাধান কৰক।
-3x^{2}-2x+5=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)\times 5}}{2\left(-3\right)}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে -3, b-ৰ বাবে -2, c-ৰ বাবে 5 চাবষ্টিটিউট৷
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)\times 5}}{2\left(-3\right)}
বৰ্গ -2৷
x=\frac{-\left(-2\right)±\sqrt{4+12\times 5}}{2\left(-3\right)}
-4 বাৰ -3 পুৰণ কৰক৷
x=\frac{-\left(-2\right)±\sqrt{4+60}}{2\left(-3\right)}
12 বাৰ 5 পুৰণ কৰক৷
x=\frac{-\left(-2\right)±\sqrt{64}}{2\left(-3\right)}
60 লৈ 4 যোগ কৰক৷
x=\frac{-\left(-2\right)±8}{2\left(-3\right)}
64-ৰ বৰ্গমূল লওক৷
x=\frac{2±8}{2\left(-3\right)}
-2ৰ বিপৰীত হৈছে 2৷
x=\frac{2±8}{-6}
2 বাৰ -3 পুৰণ কৰক৷
x=\frac{10}{-6}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{2±8}{-6} সমাধান কৰক৷ 8 লৈ 2 যোগ কৰক৷
x=-\frac{5}{3}
2 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{10}{-6} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=-\frac{6}{-6}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{2±8}{-6} সমাধান কৰক৷ 2-ৰ পৰা 8 বিয়োগ কৰক৷
x=1
-6-ৰ দ্বাৰা -6 হৰণ কৰক৷
x=-\frac{5}{3} x=1
সমীকৰণটো এতিয়া সমাধান হৈছে৷
-3x^{2}-2x+5=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
-3x^{2}-2x+5-5=-5
সমীকৰণৰ দুয়োটা দিশৰ পৰা 5 বিয়োগ কৰক৷
-3x^{2}-2x=-5
ইয়াৰ নিজৰ পৰা 5 বিয়োগ কৰিলে 0 থাকে৷
\frac{-3x^{2}-2x}{-3}=-\frac{5}{-3}
-3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\left(-\frac{2}{-3}\right)x=-\frac{5}{-3}
-3-ৰ দ্বাৰা হৰণ কৰিলে -3-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}+\frac{2}{3}x=-\frac{5}{-3}
-3-ৰ দ্বাৰা -2 হৰণ কৰক৷
x^{2}+\frac{2}{3}x=\frac{5}{3}
-3-ৰ দ্বাৰা -5 হৰণ কৰক৷
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=\frac{5}{3}+\left(\frac{1}{3}\right)^{2}
\frac{2}{3} হৰণ কৰক, \frac{1}{3} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে \frac{1}{3}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{5}{3}+\frac{1}{9}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি \frac{1}{3} বৰ্গ কৰক৷
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{16}{9}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{1}{9} লৈ \frac{5}{3} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
\left(x+\frac{1}{3}\right)^{2}=\frac{16}{9}
উৎপাদক x^{2}+\frac{2}{3}x+\frac{1}{9} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{\frac{16}{9}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x+\frac{1}{3}=\frac{4}{3} x+\frac{1}{3}=-\frac{4}{3}
সৰলীকৰণ৷
x=1 x=-\frac{5}{3}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{1}{3} বিয়োগ কৰক৷