মুখ্য সমললৈ এৰি যাওক
কাৰক
Tick mark Image
মূল্যায়ন
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

-x^{2}-7x+5=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-1\right)\times 5}}{2\left(-1\right)}
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-1\right)\times 5}}{2\left(-1\right)}
বৰ্গ -7৷
x=\frac{-\left(-7\right)±\sqrt{49+4\times 5}}{2\left(-1\right)}
-4 বাৰ -1 পুৰণ কৰক৷
x=\frac{-\left(-7\right)±\sqrt{49+20}}{2\left(-1\right)}
4 বাৰ 5 পুৰণ কৰক৷
x=\frac{-\left(-7\right)±\sqrt{69}}{2\left(-1\right)}
20 লৈ 49 যোগ কৰক৷
x=\frac{7±\sqrt{69}}{2\left(-1\right)}
-7ৰ বিপৰীত হৈছে 7৷
x=\frac{7±\sqrt{69}}{-2}
2 বাৰ -1 পুৰণ কৰক৷
x=\frac{\sqrt{69}+7}{-2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{7±\sqrt{69}}{-2} সমাধান কৰক৷ \sqrt{69} লৈ 7 যোগ কৰক৷
x=\frac{-\sqrt{69}-7}{2}
-2-ৰ দ্বাৰা 7+\sqrt{69} হৰণ কৰক৷
x=\frac{7-\sqrt{69}}{-2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{7±\sqrt{69}}{-2} সমাধান কৰক৷ 7-ৰ পৰা \sqrt{69} বিয়োগ কৰক৷
x=\frac{\sqrt{69}-7}{2}
-2-ৰ দ্বাৰা 7-\sqrt{69} হৰণ কৰক৷
-x^{2}-7x+5=-\left(x-\frac{-\sqrt{69}-7}{2}\right)\left(x-\frac{\sqrt{69}-7}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যৱহাৰ কৰিলে মূল উপাদান হয়৷ x_{1}ৰ বাবে \frac{-7-\sqrt{69}}{2} আৰু x_{2}ৰ বাবে \frac{-7+\sqrt{69}}{2} বিকল্প৷