কাৰক
\left(6-x\right)\left(x+9\right)
মূল্যায়ন
\left(6-x\right)\left(x+9\right)
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
a+b=-3 ab=-54=-54
এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো -x^{2}+ax+bx+54 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,-54 2,-27 3,-18 6,-9
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে ঋণাত্মক সংখ্যাটোৰ যোগাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -54 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1-54=-53 2-27=-25 3-18=-15 6-9=-3
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=6 b=-9
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -3।
\left(-x^{2}+6x\right)+\left(-9x+54\right)
-x^{2}-3x+54ক \left(-x^{2}+6x\right)+\left(-9x+54\right) হিচাপে পুনৰ লিখক।
x\left(-x+6\right)+9\left(-x+6\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত 9ৰ গুণনীয়ক উলিয়াওক।
\left(-x+6\right)\left(x+9\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম -x+6ৰ গুণনীয়ক উলিয়াওক।
-x^{2}-3x+54=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-1\right)\times 54}}{2\left(-1\right)}
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-1\right)\times 54}}{2\left(-1\right)}
বৰ্গ -3৷
x=\frac{-\left(-3\right)±\sqrt{9+4\times 54}}{2\left(-1\right)}
-4 বাৰ -1 পুৰণ কৰক৷
x=\frac{-\left(-3\right)±\sqrt{9+216}}{2\left(-1\right)}
4 বাৰ 54 পুৰণ কৰক৷
x=\frac{-\left(-3\right)±\sqrt{225}}{2\left(-1\right)}
216 লৈ 9 যোগ কৰক৷
x=\frac{-\left(-3\right)±15}{2\left(-1\right)}
225-ৰ বৰ্গমূল লওক৷
x=\frac{3±15}{2\left(-1\right)}
-3ৰ বিপৰীত হৈছে 3৷
x=\frac{3±15}{-2}
2 বাৰ -1 পুৰণ কৰক৷
x=\frac{18}{-2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{3±15}{-2} সমাধান কৰক৷ 15 লৈ 3 যোগ কৰক৷
x=-9
-2-ৰ দ্বাৰা 18 হৰণ কৰক৷
x=-\frac{12}{-2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{3±15}{-2} সমাধান কৰক৷ 3-ৰ পৰা 15 বিয়োগ কৰক৷
x=6
-2-ৰ দ্বাৰা -12 হৰণ কৰক৷
-x^{2}-3x+54=-\left(x-\left(-9\right)\right)\left(x-6\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যৱহাৰ কৰিলে মূল উপাদান হয়৷ x_{1}ৰ বাবে -9 আৰু x_{2}ৰ বাবে 6 বিকল্প৷
-x^{2}-3x+54=-\left(x+9\right)\left(x-6\right)
প্ৰপত্ৰ p-\left(-q\right) ৰ পৰা p+q লৈ সকলো এক্সপ্ৰেশ্বন সৰলীকৃত কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}