মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

-x^{2}-2x+3=3
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
-x^{2}-2x+3-3=3-3
সমীকৰণৰ দুয়োটা দিশৰ পৰা 3 বিয়োগ কৰক৷
-x^{2}-2x+3-3=0
ইয়াৰ নিজৰ পৰা 3 বিয়োগ কৰিলে 0 থাকে৷
-x^{2}-2x=0
3-ৰ পৰা 3 বিয়োগ কৰক৷
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}}}{2\left(-1\right)}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে -1, b-ৰ বাবে -2, c-ৰ বাবে 0 চাবষ্টিটিউট৷
x=\frac{-\left(-2\right)±2}{2\left(-1\right)}
\left(-2\right)^{2}-ৰ বৰ্গমূল লওক৷
x=\frac{2±2}{2\left(-1\right)}
-2ৰ বিপৰীত হৈছে 2৷
x=\frac{2±2}{-2}
2 বাৰ -1 পুৰণ কৰক৷
x=\frac{4}{-2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{2±2}{-2} সমাধান কৰক৷ 2 লৈ 2 যোগ কৰক৷
x=-2
-2-ৰ দ্বাৰা 4 হৰণ কৰক৷
x=\frac{0}{-2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{2±2}{-2} সমাধান কৰক৷ 2-ৰ পৰা 2 বিয়োগ কৰক৷
x=0
-2-ৰ দ্বাৰা 0 হৰণ কৰক৷
x=-2 x=0
সমীকৰণটো এতিয়া সমাধান হৈছে৷
-x^{2}-2x+3=3
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
-x^{2}-2x+3-3=3-3
সমীকৰণৰ দুয়োটা দিশৰ পৰা 3 বিয়োগ কৰক৷
-x^{2}-2x=3-3
ইয়াৰ নিজৰ পৰা 3 বিয়োগ কৰিলে 0 থাকে৷
-x^{2}-2x=0
3-ৰ পৰা 3 বিয়োগ কৰক৷
\frac{-x^{2}-2x}{-1}=\frac{0}{-1}
-1-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\left(-\frac{2}{-1}\right)x=\frac{0}{-1}
-1-ৰ দ্বাৰা হৰণ কৰিলে -1-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}+2x=\frac{0}{-1}
-1-ৰ দ্বাৰা -2 হৰণ কৰক৷
x^{2}+2x=0
-1-ৰ দ্বাৰা 0 হৰণ কৰক৷
x^{2}+2x+1^{2}=1^{2}
2 হৰণ কৰক, 1 লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে 1ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}+2x+1=1
বৰ্গ 1৷
\left(x+1\right)^{2}=1
উৎপাদক x^{2}+2x+1 । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x+1\right)^{2}}=\sqrt{1}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x+1=1 x+1=-1
সৰলীকৰণ৷
x=0 x=-2
সমীকৰণৰ দুয়োটা দিশৰ পৰা 1 বিয়োগ কৰক৷