ডিফাৰেনচিয়েট w.r.t. x
-5x^{4}
মূল্যায়ন
-x^{5}
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
-x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(x^{3})+x^{3}\frac{\mathrm{d}}{\mathrm{d}x}(-x^{2})
যিকোনো দুটা ডিফাৰেনচিয়েবল ফাংচনৰ বাবে, দুটা ফাংচনৰ গুণফলৰ ডিৰাইভেটিভ হৈছে প্ৰথম ফাংচনে দ্বিতীয়টোৰ ডিৰাইভেটিভক বৃদ্ধি কৰে লগতে দ্বিতীয় ফাংচনে প্ৰথমটোৰ ডিৰাইউভেটিভক বৃদ্ধি কৰে৷
-x^{2}\times 3x^{3-1}+x^{3}\times 2\left(-1\right)x^{2-1}
এটা বহুপদ ৰাশিৰ যৌগিক ৰাশিটো হৈছে ইয়াৰ ৰাশিসমূহৰ যৌগিক ৰাশিৰ যোগফল৷ কোনো ধ্ৰুৱক ৰাশিৰ যৌগিক ৰাশি হৈছে 0। ax^{n}-ৰ যৌগিক ৰাশি হৈছে nax^{n-1}।
-x^{2}\times 3x^{2}+x^{3}\left(-2\right)x^{1}
সৰলীকৰণ৷
3\left(-1\right)x^{2+2}-2x^{3+1}
একেটা বেচৰ পাৱাৰ মাল্টিপ্লাই কৰিবৰ বাবে সেইবিলাকৰ প্ৰতিপাদক যোগ কৰক৷
-3x^{4}-2x^{4}
সৰলীকৰণ৷
\left(-3-2\right)x^{4}
একে পদসমূহ একলগ কৰক।
-5x^{4}
-2 লৈ -3 যোগ কৰক৷
-x^{5}
একে আধাৰৰ পাৱাৰ পূৰণ কৰিবলৈ, সেইবোৰৰ ঘাতসমূহ যোগ কৰক। 5 পাবলৈ 2 আৰু 3 যোগ কৰক।
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}