মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

a+b=1 ab=-6=-6
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে -x^{2}+ax+bx+6 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,6 -2,3
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে যোগাত্মক সংখ্যাটোৰ ঋণাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -6 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1+6=5 -2+3=1
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=3 b=-2
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 1।
\left(-x^{2}+3x\right)+\left(-2x+6\right)
-x^{2}+x+6ক \left(-x^{2}+3x\right)+\left(-2x+6\right) হিচাপে পুনৰ লিখক।
-x\left(x-3\right)-2\left(x-3\right)
প্ৰথম গোটত -x আৰু দ্বিতীয় গোটত -2ৰ গুণনীয়ক উলিয়াওক।
\left(x-3\right)\left(-x-2\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-3ৰ গুণনীয়ক উলিয়াওক।
x=3 x=-2
সমীকৰণ উলিয়াবলৈ, x-3=0 আৰু -x-2=0 সমাধান কৰক।
-x^{2}+x+6=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\times 6}}{2\left(-1\right)}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে -1, b-ৰ বাবে 1, c-ৰ বাবে 6 চাবষ্টিটিউট৷
x=\frac{-1±\sqrt{1-4\left(-1\right)\times 6}}{2\left(-1\right)}
বৰ্গ 1৷
x=\frac{-1±\sqrt{1+4\times 6}}{2\left(-1\right)}
-4 বাৰ -1 পুৰণ কৰক৷
x=\frac{-1±\sqrt{1+24}}{2\left(-1\right)}
4 বাৰ 6 পুৰণ কৰক৷
x=\frac{-1±\sqrt{25}}{2\left(-1\right)}
24 লৈ 1 যোগ কৰক৷
x=\frac{-1±5}{2\left(-1\right)}
25-ৰ বৰ্গমূল লওক৷
x=\frac{-1±5}{-2}
2 বাৰ -1 পুৰণ কৰক৷
x=\frac{4}{-2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-1±5}{-2} সমাধান কৰক৷ 5 লৈ -1 যোগ কৰক৷
x=-2
-2-ৰ দ্বাৰা 4 হৰণ কৰক৷
x=-\frac{6}{-2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-1±5}{-2} সমাধান কৰক৷ -1-ৰ পৰা 5 বিয়োগ কৰক৷
x=3
-2-ৰ দ্বাৰা -6 হৰণ কৰক৷
x=-2 x=3
সমীকৰণটো এতিয়া সমাধান হৈছে৷
-x^{2}+x+6=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
-x^{2}+x+6-6=-6
সমীকৰণৰ দুয়োটা দিশৰ পৰা 6 বিয়োগ কৰক৷
-x^{2}+x=-6
ইয়াৰ নিজৰ পৰা 6 বিয়োগ কৰিলে 0 থাকে৷
\frac{-x^{2}+x}{-1}=-\frac{6}{-1}
-1-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\frac{1}{-1}x=-\frac{6}{-1}
-1-ৰ দ্বাৰা হৰণ কৰিলে -1-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}-x=-\frac{6}{-1}
-1-ৰ দ্বাৰা 1 হৰণ কৰক৷
x^{2}-x=6
-1-ৰ দ্বাৰা -6 হৰণ কৰক৷
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=6+\left(-\frac{1}{2}\right)^{2}
-1 হৰণ কৰক, -\frac{1}{2} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -\frac{1}{2}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-x+\frac{1}{4}=6+\frac{1}{4}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি -\frac{1}{2} বৰ্গ কৰক৷
x^{2}-x+\frac{1}{4}=\frac{25}{4}
\frac{1}{4} লৈ 6 যোগ কৰক৷
\left(x-\frac{1}{2}\right)^{2}=\frac{25}{4}
উৎপাদক x^{2}-x+\frac{1}{4} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-\frac{1}{2}=\frac{5}{2} x-\frac{1}{2}=-\frac{5}{2}
সৰলীকৰণ৷
x=3 x=-2
সমীকৰণৰ দুয়োটা দিশতে \frac{1}{2} যোগ কৰক৷