x-ৰ বাবে সমাধান কৰক
x=-3
x=5
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
a+b=2 ab=-15=-15
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে -x^{2}+ax+bx+15 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,15 -3,5
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে যোগাত্মক সংখ্যাটোৰ ঋণাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -15 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1+15=14 -3+5=2
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=5 b=-3
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 2।
\left(-x^{2}+5x\right)+\left(-3x+15\right)
-x^{2}+2x+15ক \left(-x^{2}+5x\right)+\left(-3x+15\right) হিচাপে পুনৰ লিখক।
-x\left(x-5\right)-3\left(x-5\right)
প্ৰথম গোটত -x আৰু দ্বিতীয় গোটত -3ৰ গুণনীয়ক উলিয়াওক।
\left(x-5\right)\left(-x-3\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-5ৰ গুণনীয়ক উলিয়াওক।
x=5 x=-3
সমীকৰণ উলিয়াবলৈ, x-5=0 আৰু -x-3=0 সমাধান কৰক।
-x^{2}+2x+15=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 15}}{2\left(-1\right)}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে -1, b-ৰ বাবে 2, c-ৰ বাবে 15 চাবষ্টিটিউট৷
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 15}}{2\left(-1\right)}
বৰ্গ 2৷
x=\frac{-2±\sqrt{4+4\times 15}}{2\left(-1\right)}
-4 বাৰ -1 পুৰণ কৰক৷
x=\frac{-2±\sqrt{4+60}}{2\left(-1\right)}
4 বাৰ 15 পুৰণ কৰক৷
x=\frac{-2±\sqrt{64}}{2\left(-1\right)}
60 লৈ 4 যোগ কৰক৷
x=\frac{-2±8}{2\left(-1\right)}
64-ৰ বৰ্গমূল লওক৷
x=\frac{-2±8}{-2}
2 বাৰ -1 পুৰণ কৰক৷
x=\frac{6}{-2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-2±8}{-2} সমাধান কৰক৷ 8 লৈ -2 যোগ কৰক৷
x=-3
-2-ৰ দ্বাৰা 6 হৰণ কৰক৷
x=-\frac{10}{-2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-2±8}{-2} সমাধান কৰক৷ -2-ৰ পৰা 8 বিয়োগ কৰক৷
x=5
-2-ৰ দ্বাৰা -10 হৰণ কৰক৷
x=-3 x=5
সমীকৰণটো এতিয়া সমাধান হৈছে৷
-x^{2}+2x+15=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
-x^{2}+2x+15-15=-15
সমীকৰণৰ দুয়োটা দিশৰ পৰা 15 বিয়োগ কৰক৷
-x^{2}+2x=-15
ইয়াৰ নিজৰ পৰা 15 বিয়োগ কৰিলে 0 থাকে৷
\frac{-x^{2}+2x}{-1}=-\frac{15}{-1}
-1-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\frac{2}{-1}x=-\frac{15}{-1}
-1-ৰ দ্বাৰা হৰণ কৰিলে -1-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}-2x=-\frac{15}{-1}
-1-ৰ দ্বাৰা 2 হৰণ কৰক৷
x^{2}-2x=15
-1-ৰ দ্বাৰা -15 হৰণ কৰক৷
x^{2}-2x+1=15+1
-2 হৰণ কৰক, -1 লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -1ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-2x+1=16
1 লৈ 15 যোগ কৰক৷
\left(x-1\right)^{2}=16
উৎপাদক x^{2}-2x+1 । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-1\right)^{2}}=\sqrt{16}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-1=4 x-1=-4
সৰলীকৰণ৷
x=5 x=-3
সমীকৰণৰ দুয়োটা দিশতে 1 যোগ কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}