কাৰক
-9a\left(2a-3\right)\left(a+3\right)
মূল্যায়ন
-9a\left(2a-3\right)\left(a+3\right)
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
9\left(-3a^{2}+9a-2a^{3}\right)
9ৰ গুণনীয়ক উলিয়াওক।
a\left(-3a+9-2a^{2}\right)
-3a^{2}+9a-2a^{3} বিবেচনা কৰক। aৰ গুণনীয়ক উলিয়াওক।
-2a^{2}-3a+9
-3a+9-2a^{2} বিবেচনা কৰক। এটা মান্য ৰূপত বহুৱাবলৈ বহুপদ পুনঃব্যৱস্থিত কৰক৷ সৰ্বোচ্চৰ পৰা নিম্ন পাৱাৰ ক্ৰমত টাৰ্মসমূহ ৰাখক৷
p+q=-3 pq=-2\times 9=-18
এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো -2a^{2}+pa+qa+9 হিচাপে পুনৰ লিখিব লাগিব। p আৰু q বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,-18 2,-9 3,-6
যিহেতু pq ঋণাত্মক, সেয়েহে p আৰু qৰ বিপৰীত সংকেত আছে। যিহেতু p+q ঋণাত্মক, সেয়েহে ঋণাত্মক সংখ্যাটোৰ যোগাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -18 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1-18=-17 2-9=-7 3-6=-3
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
p=3 q=-6
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -3।
\left(-2a^{2}+3a\right)+\left(-6a+9\right)
-2a^{2}-3a+9ক \left(-2a^{2}+3a\right)+\left(-6a+9\right) হিচাপে পুনৰ লিখক।
-a\left(2a-3\right)-3\left(2a-3\right)
প্ৰথম গোটত -a আৰু দ্বিতীয় গোটত -3ৰ গুণনীয়ক উলিয়াওক।
\left(2a-3\right)\left(-a-3\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম 2a-3ৰ গুণনীয়ক উলিয়াওক।
9a\left(2a-3\right)\left(-a-3\right)
সম্পূৰ্ণ উৎপাদক উলিওৱা অভিব্যক্তি পুনৰ লিখক।
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}