মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক (জটিল সমাধান)
Tick mark Image
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

-2x+3x^{3}-20=0
দুয়োটা দিশৰ পৰা 20 বিয়োগ কৰক৷
3x^{3}-2x-20=0
এটা মান্য ৰূপত ৰাখি সমীকৰণ পুনঃব্যৱস্থিত কৰক৷ সৰ্বোচ্চৰ পৰা নিম্ন পাৱাৰ ক্ৰমত পদসমূহ ৰাখক৷
±\frac{20}{3},±20,±\frac{10}{3},±10,±\frac{5}{3},±5,±\frac{4}{3},±4,±\frac{2}{3},±2,±\frac{1}{3},±1
ৰেশ্যনেল বৰ্গমূল সূত্ৰৰ দ্বাৰা, এটা বহুপদৰ সকলো ৰেশ্যনেল ৰুট \frac{p}{q}ৰ ৰূপত থাকে, য'ত pএ ধ্ৰুৱক ৰাশি -20ক হৰণ কৰে আৰু qএ প্ৰমুখ গুণাংক 3ক হৰণ কৰে। সকলো প্ৰাৰ্থীৰ সূচী \frac{p}{q}।
x=2
পূৰ্ণ মান অনুসৰি আটাইতকৈ সৰু মানটোৰ পৰা আৰম্ভ কৰি সকলো পূৰ্ণ সংখ্যাৰ এনে এটা বৰ্গমূল বিচাৰি উলিয়াওক। যদি পূৰ্ণ সংখ্যাৰ বৰ্গমূল পোৱা নাযায়, তেন্তে ভগ্নাংশ ব্যৱহাৰ কৰি চাওক।
3x^{2}+6x+10=0
গুণনীয়কৰ সূত্ৰ অনুসৰি, x-k হৈছে প্ৰত্যেক বৰ্গমূল kৰ বাবে বহুপদৰ এটা গুণনীয়ক। 3x^{2}+6x+10 লাভ কৰিবলৈ x-2ৰ দ্বাৰা 3x^{3}-2x-20 হৰণ কৰক৷ সমীকৰণটো সমাধান কৰক য'ত ফলাফল 0ৰ সমান হয়।
x=\frac{-6±\sqrt{6^{2}-4\times 3\times 10}}{2\times 3}
ax^{2}+bx+c=0 প্ৰপত্ৰৰ সকলো সমীকৰণ দ্বিঘাত সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। aৰ বাবে 3ৰ বিকল্প দিয়ক, bৰ বাবে 6, আৰু দ্বিঘাত সূত্ৰত cৰ বাবে 10।
x=\frac{-6±\sqrt{-84}}{6}
গণনা কৰক৷
x=-\frac{\sqrt{21}i}{3}-1 x=\frac{\sqrt{21}i}{3}-1
যেতিয়া ± যোগ হয় আৰু যেতিয়া ± বিয়োগ হয় তেতিয়া 3x^{2}+6x+10=0 সমীকৰণটো সমাধান কৰক।
x=2 x=-\frac{\sqrt{21}i}{3}-1 x=\frac{\sqrt{21}i}{3}-1
বিচাৰি পোৱা সকলো ফলাফলৰ তালিকা সৃষ্টি কৰক।
-2x+3x^{3}-20=0
দুয়োটা দিশৰ পৰা 20 বিয়োগ কৰক৷
3x^{3}-2x-20=0
এটা মান্য ৰূপত ৰাখি সমীকৰণ পুনঃব্যৱস্থিত কৰক৷ সৰ্বোচ্চৰ পৰা নিম্ন পাৱাৰ ক্ৰমত পদসমূহ ৰাখক৷
±\frac{20}{3},±20,±\frac{10}{3},±10,±\frac{5}{3},±5,±\frac{4}{3},±4,±\frac{2}{3},±2,±\frac{1}{3},±1
ৰেশ্যনেল বৰ্গমূল সূত্ৰৰ দ্বাৰা, এটা বহুপদৰ সকলো ৰেশ্যনেল ৰুট \frac{p}{q}ৰ ৰূপত থাকে, য'ত pএ ধ্ৰুৱক ৰাশি -20ক হৰণ কৰে আৰু qএ প্ৰমুখ গুণাংক 3ক হৰণ কৰে। সকলো প্ৰাৰ্থীৰ সূচী \frac{p}{q}।
x=2
পূৰ্ণ মান অনুসৰি আটাইতকৈ সৰু মানটোৰ পৰা আৰম্ভ কৰি সকলো পূৰ্ণ সংখ্যাৰ এনে এটা বৰ্গমূল বিচাৰি উলিয়াওক। যদি পূৰ্ণ সংখ্যাৰ বৰ্গমূল পোৱা নাযায়, তেন্তে ভগ্নাংশ ব্যৱহাৰ কৰি চাওক।
3x^{2}+6x+10=0
গুণনীয়কৰ সূত্ৰ অনুসৰি, x-k হৈছে প্ৰত্যেক বৰ্গমূল kৰ বাবে বহুপদৰ এটা গুণনীয়ক। 3x^{2}+6x+10 লাভ কৰিবলৈ x-2ৰ দ্বাৰা 3x^{3}-2x-20 হৰণ কৰক৷ সমীকৰণটো সমাধান কৰক য'ত ফলাফল 0ৰ সমান হয়।
x=\frac{-6±\sqrt{6^{2}-4\times 3\times 10}}{2\times 3}
ax^{2}+bx+c=0 প্ৰপত্ৰৰ সকলো সমীকৰণ দ্বিঘাত সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। aৰ বাবে 3ৰ বিকল্প দিয়ক, bৰ বাবে 6, আৰু দ্বিঘাত সূত্ৰত cৰ বাবে 10।
x=\frac{-6±\sqrt{-84}}{6}
গণনা কৰক৷
x\in \emptyset
যিহেতু ঋণাত্মক সংখ্যাৰ বৰ্গমূলটো প্ৰকৃত ক্ষেত্ৰত নিৰ্ধাৰিত কৰা হোৱা নাই, গতিকে তাৰ কোনো সমাধান নাই৷
x=2
বিচাৰি পোৱা সকলো ফলাফলৰ তালিকা সৃষ্টি কৰক।