মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

-x^{2}+8-2x>0
দুয়োটা দিশৰ পৰা 2x বিয়োগ কৰক৷
x^{2}-8+2x<0
-x^{2}+8-2xত থকা উচ্চতম শক্তিৰ দ্বিঘাতক ধনাত্মক কৰিবলৈ অসাম্যক 1-ৰ দ্বাৰা পূৰণ কৰক। যিহেতু -1 হৈছে ঋণাত্মক, অসমতুলতাৰ দিশ পৰিৱৰ্তন হয়।
x^{2}-8+2x=0
এইটো অসাম্য সমাধান কৰিবলৈ, বাওঁফালে উৎপাদক ভাঙক। ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
x=\frac{-2±\sqrt{2^{2}-4\times 1\left(-8\right)}}{2}
ax^{2}+bx+c=0 প্ৰপত্ৰৰ সকলো সমীকৰণ দ্বিঘাত সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। aৰ বাবে 1ৰ বিকল্প দিয়ক, bৰ বাবে 2, আৰু দ্বিঘাত সূত্ৰত cৰ বাবে -8।
x=\frac{-2±6}{2}
গণনা কৰক৷
x=2 x=-4
যেতিয়া ± যোগ হয় আৰু যেতিয়া ± বিয়োগ হয় তেতিয়া x=\frac{-2±6}{2} সমীকৰণটো সমাধান কৰক।
\left(x-2\right)\left(x+4\right)<0
আহৰিত সমাধানসমূহ ব্যৱহাৰ কৰি অসাম্য পুনৰ লিখক।
x-2>0 x+4<0
গুণফল ঋণাত্মক হ'বৰ বাবে, x-2 আৰু x+4 বিপৰীত চিহ্নৰ হ'ব লাগিব। যদি x-2 ধনাত্মক আৰু x+4 ঋণাত্মক হয় তেতিয়া উদাহৰণটো বিবেচনা কৰক।
x\in \emptyset
যিকোনো xৰ বাবে এইটো অশুদ্ধ৷
x+4>0 x-2<0
যদি x+4 ধনাত্মক আৰু x-2 ঋণাত্মক হয় তেতিয়া উদাহৰণটো বিবেচনা কৰক।
x\in \left(-4,2\right)
উভয় অসাম্য সন্তুষ্ট কৰা সমাধানটো হৈছে x\in \left(-4,2\right)।
x\in \left(-4,2\right)
চূড়ান্ত সমাধানটো হৈছে আহৰিত সমাধানসমূহৰ একত্ৰিকৰণ।