মুখ্য সমললৈ এৰি যাওক
মূল্যায়ন
Tick mark Image
ডিফাৰেনচিয়েট w.r.t. x
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

\frac{-x}{x+1}+1
এটা একক ভগ্নাংশ ৰূপে \left(-\frac{1}{x+1}\right)x প্ৰকাশ কৰক৷
\frac{-x}{x+1}+\frac{x+1}{x+1}
এক্সপ্ৰেশ্বন যোগ বা বিয়োগ কৰিবলৈ, সিহঁতৰ হৰ একে কৰিবলৈ বিস্তাৰ কৰক৷ 1 বাৰ \frac{x+1}{x+1} পুৰণ কৰক৷
\frac{-x+x+1}{x+1}
যিহেতু \frac{-x}{x+1} আৰু \frac{x+1}{x+1}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ যোগ কৰি যোগ কৰক৷
\frac{1}{x+1}
-x+x+1ৰ একেধৰণ পদবোৰ একত্ৰিত কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-x}{x+1}+1)
এটা একক ভগ্নাংশ ৰূপে \left(-\frac{1}{x+1}\right)x প্ৰকাশ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-x}{x+1}+\frac{x+1}{x+1})
এক্সপ্ৰেশ্বন যোগ বা বিয়োগ কৰিবলৈ, সিহঁতৰ হৰ একে কৰিবলৈ বিস্তাৰ কৰক৷ 1 বাৰ \frac{x+1}{x+1} পুৰণ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-x+x+1}{x+1})
যিহেতু \frac{-x}{x+1} আৰু \frac{x+1}{x+1}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ যোগ কৰি যোগ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x+1})
-x+x+1ৰ একেধৰণ পদবোৰ একত্ৰিত কৰক৷
-\left(x^{1}+1\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+1)
যদি F দুটা ডিফাৰেনচিয়েবল ফাংচন f\left(u\right) আৰু u=g\left(x\right) এটা সংযোজন হয়, যি F\left(x\right)=f\left(g\left(x\right)\right), তেতিয়া f-ৰ ডিৰাইব হেটিভ F হয়, যি u সৈতে সম্বন্ধিত হয়, g-ৰ ডিৰাইভেটিভ x-ৰ সৈতে সম্বন্ধিত হয়, যি \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right)৷
-\left(x^{1}+1\right)^{-2}x^{1-1}
এটা বহুপদ ৰাশিৰ যৌগিক ৰাশিটো হৈছে ইয়াৰ ৰাশিসমূহৰ যৌগিক ৰাশিৰ যোগফল৷ কোনো ধ্ৰুৱক ৰাশিৰ যৌগিক ৰাশি হৈছে 0। ax^{n}-ৰ যৌগিক ৰাশি হৈছে nax^{n-1}।
-x^{0}\left(x^{1}+1\right)^{-2}
সৰলীকৰণ৷
-x^{0}\left(x+1\right)^{-2}
যিকোনো পদৰ বাবে t, t^{1}=t।
-\left(x+1\right)^{-2}
0, t^{0}=1ৰ বাহিৰে যিকোনো পদৰ বাবে t।