x-ৰ বাবে সমাধান কৰক
x=0.1
x=-1.6
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
1+3x+2x^{2}=1.32
1+2xৰ দ্বাৰা 1+x পূৰণ কৰিবলৈ বিভাজক সম্পত্তি ব্যৱহাৰ কৰক আৰু পদসমূহৰ দৰে একত্ৰিত কৰক৷
1+3x+2x^{2}-1.32=0
দুয়োটা দিশৰ পৰা 1.32 বিয়োগ কৰক৷
-0.32+3x+2x^{2}=0
-0.32 লাভ কৰিবলৈ 1-ৰ পৰা 1.32 বিয়োগ কৰক৷
2x^{2}+3x-0.32=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-0.32\right)}}{2\times 2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 2, b-ৰ বাবে 3, c-ৰ বাবে -0.32 চাবষ্টিটিউট৷
x=\frac{-3±\sqrt{9-4\times 2\left(-0.32\right)}}{2\times 2}
বৰ্গ 3৷
x=\frac{-3±\sqrt{9-8\left(-0.32\right)}}{2\times 2}
-4 বাৰ 2 পুৰণ কৰক৷
x=\frac{-3±\sqrt{9+2.56}}{2\times 2}
-8 বাৰ -0.32 পুৰণ কৰক৷
x=\frac{-3±\sqrt{11.56}}{2\times 2}
2.56 লৈ 9 যোগ কৰক৷
x=\frac{-3±\frac{17}{5}}{2\times 2}
11.56-ৰ বৰ্গমূল লওক৷
x=\frac{-3±\frac{17}{5}}{4}
2 বাৰ 2 পুৰণ কৰক৷
x=\frac{\frac{2}{5}}{4}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-3±\frac{17}{5}}{4} সমাধান কৰক৷ \frac{17}{5} লৈ -3 যোগ কৰক৷
x=\frac{1}{10}
4-ৰ দ্বাৰা \frac{2}{5} হৰণ কৰক৷
x=-\frac{\frac{32}{5}}{4}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-3±\frac{17}{5}}{4} সমাধান কৰক৷ -3-ৰ পৰা \frac{17}{5} বিয়োগ কৰক৷
x=-\frac{8}{5}
4-ৰ দ্বাৰা -\frac{32}{5} হৰণ কৰক৷
x=\frac{1}{10} x=-\frac{8}{5}
সমীকৰণটো এতিয়া সমাধান হৈছে৷
1+3x+2x^{2}=1.32
1+2xৰ দ্বাৰা 1+x পূৰণ কৰিবলৈ বিভাজক সম্পত্তি ব্যৱহাৰ কৰক আৰু পদসমূহৰ দৰে একত্ৰিত কৰক৷
3x+2x^{2}=1.32-1
দুয়োটা দিশৰ পৰা 1 বিয়োগ কৰক৷
3x+2x^{2}=0.32
0.32 লাভ কৰিবলৈ 1.32-ৰ পৰা 1 বিয়োগ কৰক৷
2x^{2}+3x=0.32
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
\frac{2x^{2}+3x}{2}=\frac{0.32}{2}
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\frac{3}{2}x=\frac{0.32}{2}
2-ৰ দ্বাৰা হৰণ কৰিলে 2-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}+\frac{3}{2}x=0.16
2-ৰ দ্বাৰা 0.32 হৰণ কৰক৷
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=0.16+\left(\frac{3}{4}\right)^{2}
\frac{3}{2} হৰণ কৰক, \frac{3}{4} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে \frac{3}{4}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}+\frac{3}{2}x+\frac{9}{16}=0.16+\frac{9}{16}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি \frac{3}{4} বৰ্গ কৰক৷
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{289}{400}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{9}{16} লৈ 0.16 যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
\left(x+\frac{3}{4}\right)^{2}=\frac{289}{400}
উৎপাদক x^{2}+\frac{3}{2}x+\frac{9}{16} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{289}{400}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x+\frac{3}{4}=\frac{17}{20} x+\frac{3}{4}=-\frac{17}{20}
সৰলীকৰণ৷
x=\frac{1}{10} x=-\frac{8}{5}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{3}{4} বিয়োগ কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}