x-ৰ বাবে সমাধান কৰক
x=-4
x=2
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
x^{2}-2x+1+\left(x+2\right)^{2}-\left(x-3\right)\left(x+3\right)=22
\left(x-1\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ব্যৱহাৰ কৰক৷
x^{2}-2x+1+x^{2}+4x+4-\left(x-3\right)\left(x+3\right)=22
\left(x+2\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ব্যৱহাৰ কৰক৷
2x^{2}-2x+1+4x+4-\left(x-3\right)\left(x+3\right)=22
2x^{2} লাভ কৰিবলৈ x^{2} আৰু x^{2} একত্ৰ কৰক৷
2x^{2}+2x+1+4-\left(x-3\right)\left(x+3\right)=22
2x লাভ কৰিবলৈ -2x আৰু 4x একত্ৰ কৰক৷
2x^{2}+2x+5-\left(x-3\right)\left(x+3\right)=22
5 লাভ কৰিবৰ বাবে 1 আৰু 4 যোগ কৰক৷
2x^{2}+2x+5-\left(x^{2}-9\right)=22
\left(x-3\right)\left(x+3\right) বিবেচনা কৰক। \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} নিয়ম ব্যৱহাৰ কৰি গুণনিয়ক বিভিন্ন বৰ্গলৈ ৰূপান্তৰিত কৰিব পাৰি৷ বৰ্গ 3৷
2x^{2}+2x+5-x^{2}+9=22
x^{2}-9ৰ বিপৰীত বিচাৰিবলৈ, প্ৰত্যেকটো পদৰ বিপৰীত অৰ্থ বিচাৰক৷
x^{2}+2x+5+9=22
x^{2} লাভ কৰিবলৈ 2x^{2} আৰু -x^{2} একত্ৰ কৰক৷
x^{2}+2x+14=22
14 লাভ কৰিবৰ বাবে 5 আৰু 9 যোগ কৰক৷
x^{2}+2x+14-22=0
দুয়োটা দিশৰ পৰা 22 বিয়োগ কৰক৷
x^{2}+2x-8=0
-8 লাভ কৰিবলৈ 14-ৰ পৰা 22 বিয়োগ কৰক৷
a+b=2 ab=-8
সমীকৰণ সমাধান কৰিবলৈ সূত্ৰ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ব্যৱহাৰ কৰি x^{2}+2x-8ৰ উৎপাদক উলিয়াওক। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,8 -2,4
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে যোগাত্মক সংখ্যাটোৰ ঋণাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -8 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1+8=7 -2+4=2
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-2 b=4
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 2।
\left(x-2\right)\left(x+4\right)
লাভ কৰা মূল্য ব্যৱহাৰ কৰি উৎপাদক উলিওৱা ৰাশি \left(x+a\right)\left(x+b\right) পুনৰ লিখক।
x=2 x=-4
সমীকৰণ উলিয়াবলৈ, x-2=0 আৰু x+4=0 সমাধান কৰক।
x^{2}-2x+1+\left(x+2\right)^{2}-\left(x-3\right)\left(x+3\right)=22
\left(x-1\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ব্যৱহাৰ কৰক৷
x^{2}-2x+1+x^{2}+4x+4-\left(x-3\right)\left(x+3\right)=22
\left(x+2\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ব্যৱহাৰ কৰক৷
2x^{2}-2x+1+4x+4-\left(x-3\right)\left(x+3\right)=22
2x^{2} লাভ কৰিবলৈ x^{2} আৰু x^{2} একত্ৰ কৰক৷
2x^{2}+2x+1+4-\left(x-3\right)\left(x+3\right)=22
2x লাভ কৰিবলৈ -2x আৰু 4x একত্ৰ কৰক৷
2x^{2}+2x+5-\left(x-3\right)\left(x+3\right)=22
5 লাভ কৰিবৰ বাবে 1 আৰু 4 যোগ কৰক৷
2x^{2}+2x+5-\left(x^{2}-9\right)=22
\left(x-3\right)\left(x+3\right) বিবেচনা কৰক। \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} নিয়ম ব্যৱহাৰ কৰি গুণনিয়ক বিভিন্ন বৰ্গলৈ ৰূপান্তৰিত কৰিব পাৰি৷ বৰ্গ 3৷
2x^{2}+2x+5-x^{2}+9=22
x^{2}-9ৰ বিপৰীত বিচাৰিবলৈ, প্ৰত্যেকটো পদৰ বিপৰীত অৰ্থ বিচাৰক৷
x^{2}+2x+5+9=22
x^{2} লাভ কৰিবলৈ 2x^{2} আৰু -x^{2} একত্ৰ কৰক৷
x^{2}+2x+14=22
14 লাভ কৰিবৰ বাবে 5 আৰু 9 যোগ কৰক৷
x^{2}+2x+14-22=0
দুয়োটা দিশৰ পৰা 22 বিয়োগ কৰক৷
x^{2}+2x-8=0
-8 লাভ কৰিবলৈ 14-ৰ পৰা 22 বিয়োগ কৰক৷
a+b=2 ab=1\left(-8\right)=-8
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে x^{2}+ax+bx-8 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,8 -2,4
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে যোগাত্মক সংখ্যাটোৰ ঋণাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -8 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1+8=7 -2+4=2
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-2 b=4
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 2।
\left(x^{2}-2x\right)+\left(4x-8\right)
x^{2}+2x-8ক \left(x^{2}-2x\right)+\left(4x-8\right) হিচাপে পুনৰ লিখক।
x\left(x-2\right)+4\left(x-2\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত 4ৰ গুণনীয়ক উলিয়াওক।
\left(x-2\right)\left(x+4\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-2ৰ গুণনীয়ক উলিয়াওক।
x=2 x=-4
সমীকৰণ উলিয়াবলৈ, x-2=0 আৰু x+4=0 সমাধান কৰক।
x^{2}-2x+1+\left(x+2\right)^{2}-\left(x-3\right)\left(x+3\right)=22
\left(x-1\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ব্যৱহাৰ কৰক৷
x^{2}-2x+1+x^{2}+4x+4-\left(x-3\right)\left(x+3\right)=22
\left(x+2\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ব্যৱহাৰ কৰক৷
2x^{2}-2x+1+4x+4-\left(x-3\right)\left(x+3\right)=22
2x^{2} লাভ কৰিবলৈ x^{2} আৰু x^{2} একত্ৰ কৰক৷
2x^{2}+2x+1+4-\left(x-3\right)\left(x+3\right)=22
2x লাভ কৰিবলৈ -2x আৰু 4x একত্ৰ কৰক৷
2x^{2}+2x+5-\left(x-3\right)\left(x+3\right)=22
5 লাভ কৰিবৰ বাবে 1 আৰু 4 যোগ কৰক৷
2x^{2}+2x+5-\left(x^{2}-9\right)=22
\left(x-3\right)\left(x+3\right) বিবেচনা কৰক। \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} নিয়ম ব্যৱহাৰ কৰি গুণনিয়ক বিভিন্ন বৰ্গলৈ ৰূপান্তৰিত কৰিব পাৰি৷ বৰ্গ 3৷
2x^{2}+2x+5-x^{2}+9=22
x^{2}-9ৰ বিপৰীত বিচাৰিবলৈ, প্ৰত্যেকটো পদৰ বিপৰীত অৰ্থ বিচাৰক৷
x^{2}+2x+5+9=22
x^{2} লাভ কৰিবলৈ 2x^{2} আৰু -x^{2} একত্ৰ কৰক৷
x^{2}+2x+14=22
14 লাভ কৰিবৰ বাবে 5 আৰু 9 যোগ কৰক৷
x^{2}+2x+14-22=0
দুয়োটা দিশৰ পৰা 22 বিয়োগ কৰক৷
x^{2}+2x-8=0
-8 লাভ কৰিবলৈ 14-ৰ পৰা 22 বিয়োগ কৰক৷
x=\frac{-2±\sqrt{2^{2}-4\left(-8\right)}}{2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 1, b-ৰ বাবে 2, c-ৰ বাবে -8 চাবষ্টিটিউট৷
x=\frac{-2±\sqrt{4-4\left(-8\right)}}{2}
বৰ্গ 2৷
x=\frac{-2±\sqrt{4+32}}{2}
-4 বাৰ -8 পুৰণ কৰক৷
x=\frac{-2±\sqrt{36}}{2}
32 লৈ 4 যোগ কৰক৷
x=\frac{-2±6}{2}
36-ৰ বৰ্গমূল লওক৷
x=\frac{4}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-2±6}{2} সমাধান কৰক৷ 6 লৈ -2 যোগ কৰক৷
x=2
2-ৰ দ্বাৰা 4 হৰণ কৰক৷
x=-\frac{8}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-2±6}{2} সমাধান কৰক৷ -2-ৰ পৰা 6 বিয়োগ কৰক৷
x=-4
2-ৰ দ্বাৰা -8 হৰণ কৰক৷
x=2 x=-4
সমীকৰণটো এতিয়া সমাধান হৈছে৷
x^{2}-2x+1+\left(x+2\right)^{2}-\left(x-3\right)\left(x+3\right)=22
\left(x-1\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ব্যৱহাৰ কৰক৷
x^{2}-2x+1+x^{2}+4x+4-\left(x-3\right)\left(x+3\right)=22
\left(x+2\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ব্যৱহাৰ কৰক৷
2x^{2}-2x+1+4x+4-\left(x-3\right)\left(x+3\right)=22
2x^{2} লাভ কৰিবলৈ x^{2} আৰু x^{2} একত্ৰ কৰক৷
2x^{2}+2x+1+4-\left(x-3\right)\left(x+3\right)=22
2x লাভ কৰিবলৈ -2x আৰু 4x একত্ৰ কৰক৷
2x^{2}+2x+5-\left(x-3\right)\left(x+3\right)=22
5 লাভ কৰিবৰ বাবে 1 আৰু 4 যোগ কৰক৷
2x^{2}+2x+5-\left(x^{2}-9\right)=22
\left(x-3\right)\left(x+3\right) বিবেচনা কৰক। \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} নিয়ম ব্যৱহাৰ কৰি গুণনিয়ক বিভিন্ন বৰ্গলৈ ৰূপান্তৰিত কৰিব পাৰি৷ বৰ্গ 3৷
2x^{2}+2x+5-x^{2}+9=22
x^{2}-9ৰ বিপৰীত বিচাৰিবলৈ, প্ৰত্যেকটো পদৰ বিপৰীত অৰ্থ বিচাৰক৷
x^{2}+2x+5+9=22
x^{2} লাভ কৰিবলৈ 2x^{2} আৰু -x^{2} একত্ৰ কৰক৷
x^{2}+2x+14=22
14 লাভ কৰিবৰ বাবে 5 আৰু 9 যোগ কৰক৷
x^{2}+2x=22-14
দুয়োটা দিশৰ পৰা 14 বিয়োগ কৰক৷
x^{2}+2x=8
8 লাভ কৰিবলৈ 22-ৰ পৰা 14 বিয়োগ কৰক৷
x^{2}+2x+1^{2}=8+1^{2}
2 হৰণ কৰক, 1 লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে 1ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}+2x+1=8+1
বৰ্গ 1৷
x^{2}+2x+1=9
1 লৈ 8 যোগ কৰক৷
\left(x+1\right)^{2}=9
উৎপাদক x^{2}+2x+1 । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x+1\right)^{2}}=\sqrt{9}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x+1=3 x+1=-3
সৰলীকৰণ৷
x=2 x=-4
সমীকৰণৰ দুয়োটা দিশৰ পৰা 1 বিয়োগ কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}