মুখ্য সমললৈ এৰি যাওক
কাৰক
Tick mark Image
মূল্যায়ন
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

a+b=-1 ab=1\left(-2\right)=-2
এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো x^{2}+ax+bx-2 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
a=-2 b=1
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে ঋণাত্মক সংখ্যাটোৰ যোগাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। এনেধৰণৰ একমাত্ৰ যোৰা হৈছে ছিষ্টেম সমাধান।
\left(x^{2}-2x\right)+\left(x-2\right)
x^{2}-x-2ক \left(x^{2}-2x\right)+\left(x-2\right) হিচাপে পুনৰ লিখক।
x\left(x-2\right)+x-2
x^{2}-2xত xৰ গুণনীয়ক উলিয়াওক।
\left(x-2\right)\left(x+1\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-2ৰ গুণনীয়ক উলিয়াওক।
x^{2}-x-2=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-2\right)}}{2}
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-1\right)±\sqrt{1+8}}{2}
-4 বাৰ -2 পুৰণ কৰক৷
x=\frac{-\left(-1\right)±\sqrt{9}}{2}
8 লৈ 1 যোগ কৰক৷
x=\frac{-\left(-1\right)±3}{2}
9-ৰ বৰ্গমূল লওক৷
x=\frac{1±3}{2}
-1ৰ বিপৰীত হৈছে 1৷
x=\frac{4}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{1±3}{2} সমাধান কৰক৷ 3 লৈ 1 যোগ কৰক৷
x=2
2-ৰ দ্বাৰা 4 হৰণ কৰক৷
x=-\frac{2}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{1±3}{2} সমাধান কৰক৷ 1-ৰ পৰা 3 বিয়োগ কৰক৷
x=-1
2-ৰ দ্বাৰা -2 হৰণ কৰক৷
x^{2}-x-2=\left(x-2\right)\left(x-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যৱহাৰ কৰিলে মূল উপাদান হয়৷ x_{1}ৰ বাবে 2 আৰু x_{2}ৰ বাবে -1 বিকল্প৷
x^{2}-x-2=\left(x-2\right)\left(x+1\right)
প্ৰপত্ৰ p-\left(-q\right) ৰ পৰা p+q লৈ সকলো এক্সপ্ৰেশ্বন সৰলীকৃত কৰক৷