মুখ্য সমললৈ এৰি যাওক
কাৰক
Tick mark Image
মূল্যায়ন
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

a+b=12 ab=1\times 36=36
এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো x^{2}+ax+bx+36 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,36 2,18 3,12 4,9 6,6
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে a আৰু b দুয়োটাই যোগাত্মক। যিবোৰ যোৰাই গুণফল 36 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=6 b=6
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 12।
\left(x^{2}+6x\right)+\left(6x+36\right)
x^{2}+12x+36ক \left(x^{2}+6x\right)+\left(6x+36\right) হিচাপে পুনৰ লিখক।
x\left(x+6\right)+6\left(x+6\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত 6ৰ গুণনীয়ক উলিয়াওক।
\left(x+6\right)\left(x+6\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x+6ৰ গুণনীয়ক উলিয়াওক।
\left(x+6\right)^{2}
এটা বান'মিয়েল স্কুৱেৰ পুনঃলিখক৷
factor(x^{2}+12x+36)
এই ট্ৰিন'মিয়েল হৈছে এটা ট্ৰিন'মিয়েল বৰ্গৰ ৰূপ, সম্ভৱত এটা উমৈহতীয়া গুণনীয়ক দ্বাৰা পুৰণ কৰা হৈছিল৷ ট্ৰিন'মিয়েল বৰ্গক অগ্ৰণী আৰু অনুগামী টাৰ্মসমূহৰ বৰ্গমূল বিচাৰি ফেক্টৰেজ কৰিব পাৰি৷
\sqrt{36}=6
অনুগামী পদ 36ৰ বৰ্গমূল বিচাৰক৷
\left(x+6\right)^{2}
ট্ৰিন'মিয়েল বৰ্গ হৈছে বিনোমিয়েলৰ বৰ্গ, যি অগ্ৰণী আৰু অনুগামী পদসমূহৰ বৰ্গমূলৰ পাৰ্থক্য বা যোগফল, ট্ৰিন'মিয়েল বৰ্গৰ মধ্যম পদটোৰ চিনৰ দ্বাৰা নিৰ্ধাৰণ কৰা চিহ্নৰ সৈতে৷
x^{2}+12x+36=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
x=\frac{-12±\sqrt{12^{2}-4\times 36}}{2}
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-12±\sqrt{144-4\times 36}}{2}
বৰ্গ 12৷
x=\frac{-12±\sqrt{144-144}}{2}
-4 বাৰ 36 পুৰণ কৰক৷
x=\frac{-12±\sqrt{0}}{2}
-144 লৈ 144 যোগ কৰক৷
x=\frac{-12±0}{2}
0-ৰ বৰ্গমূল লওক৷
x^{2}+12x+36=\left(x-\left(-6\right)\right)\left(x-\left(-6\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যৱহাৰ কৰিলে মূল উপাদান হয়৷ x_{1}ৰ বাবে -6 আৰু x_{2}ৰ বাবে -6 বিকল্প৷
x^{2}+12x+36=\left(x+6\right)\left(x+6\right)
প্ৰপত্ৰ p-\left(-q\right) ৰ পৰা p+q লৈ সকলো এক্সপ্ৰেশ্বন সৰলীকৃত কৰক৷