মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

x^{2}+5x=24
x+5ক xৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
x^{2}+5x-24=0
দুয়োটা দিশৰ পৰা 24 বিয়োগ কৰক৷
x=\frac{-5±\sqrt{5^{2}-4\left(-24\right)}}{2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 1, b-ৰ বাবে 5, c-ৰ বাবে -24 চাবষ্টিটিউট৷
x=\frac{-5±\sqrt{25-4\left(-24\right)}}{2}
বৰ্গ 5৷
x=\frac{-5±\sqrt{25+96}}{2}
-4 বাৰ -24 পুৰণ কৰক৷
x=\frac{-5±\sqrt{121}}{2}
96 লৈ 25 যোগ কৰক৷
x=\frac{-5±11}{2}
121-ৰ বৰ্গমূল লওক৷
x=\frac{6}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-5±11}{2} সমাধান কৰক৷ 11 লৈ -5 যোগ কৰক৷
x=3
2-ৰ দ্বাৰা 6 হৰণ কৰক৷
x=-\frac{16}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-5±11}{2} সমাধান কৰক৷ -5-ৰ পৰা 11 বিয়োগ কৰক৷
x=-8
2-ৰ দ্বাৰা -16 হৰণ কৰক৷
x=3 x=-8
সমীকৰণটো এতিয়া সমাধান হৈছে৷
x^{2}+5x=24
x+5ক xৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=24+\left(\frac{5}{2}\right)^{2}
5 হৰণ কৰক, \frac{5}{2} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে \frac{5}{2}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}+5x+\frac{25}{4}=24+\frac{25}{4}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি \frac{5}{2} বৰ্গ কৰক৷
x^{2}+5x+\frac{25}{4}=\frac{121}{4}
\frac{25}{4} লৈ 24 যোগ কৰক৷
\left(x+\frac{5}{2}\right)^{2}=\frac{121}{4}
উৎপাদক x^{2}+5x+\frac{25}{4} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x+\frac{5}{2}=\frac{11}{2} x+\frac{5}{2}=-\frac{11}{2}
সৰলীকৰণ৷
x=3 x=-8
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{5}{2} বিয়োগ কৰক৷