মূল্যায়ন
\frac{81r^{40}}{s^{6}}
বিস্তাৰ
\frac{81r^{40}}{s^{6}}
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
\left(9r^{20}s^{-3}\right)^{2}
এক্সপ্ৰেচন সৰলীকৰণ কৰিবলৈ এক্সপ'নেণ্টৰ নিয়মসমূহ ব্যৱহাৰ কৰক৷
9^{2}\left(r^{20}\right)^{2}\left(s^{-3}\right)^{2}
এটা পাৱাৰলৈ দুটা বা তাতোধিক সংখ্যাৰ গুণফল বৃদ্ধি কৰিবলৈ, প্ৰতিটো সংখ্যা পাৱাৰলৈ বৃদ্ধি কৰক আৰু ইয়াৰ গুণফলটো লওক৷
81\left(r^{20}\right)^{2}\left(s^{-3}\right)^{2}
পাৱাৰ 2-লৈ 9 বৃদ্ধি কৰক৷
81r^{20\times 2}s^{-3\times 2}
এটা পাৱাৰ আন এটা পাৱাৰত বঢ়াবলৈ, ঘাতসমূহ পূৰণ কৰক।
81r^{40}s^{-3\times 2}
20 বাৰ 2 পুৰণ কৰক৷
81r^{40}\times \frac{1}{s^{6}}
-3 বাৰ 2 পুৰণ কৰক৷
\left(9r^{20}s^{-3}\right)^{2}
এক্সপ্ৰেচন সৰলীকৰণ কৰিবলৈ এক্সপ'নেণ্টৰ নিয়মসমূহ ব্যৱহাৰ কৰক৷
9^{2}\left(r^{20}\right)^{2}\left(s^{-3}\right)^{2}
এটা পাৱাৰলৈ দুটা বা তাতোধিক সংখ্যাৰ গুণফল বৃদ্ধি কৰিবলৈ, প্ৰতিটো সংখ্যা পাৱাৰলৈ বৃদ্ধি কৰক আৰু ইয়াৰ গুণফলটো লওক৷
81\left(r^{20}\right)^{2}\left(s^{-3}\right)^{2}
পাৱাৰ 2-লৈ 9 বৃদ্ধি কৰক৷
81r^{20\times 2}s^{-3\times 2}
এটা পাৱাৰ আন এটা পাৱাৰত বঢ়াবলৈ, ঘাতসমূহ পূৰণ কৰক।
81r^{40}s^{-3\times 2}
20 বাৰ 2 পুৰণ কৰক৷
81r^{40}\times \frac{1}{s^{6}}
-3 বাৰ 2 পুৰণ কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}