x-ৰ বাবে সমাধান কৰক
x = \frac{\sqrt{1085}}{15} \approx 2.195955879
x = -\frac{\sqrt{1085}}{15} \approx -2.195955879
x=1
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
4x^{2}+16x+16-5x\left(7-3x\right)\left(7+3x\right)-\left(3x-2\right)^{2}-40x^{2}=-205
\left(2x+4\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ব্যৱহাৰ কৰক৷
4x^{2}+16x+16-5x\left(7-3x\right)\left(7+3x\right)-\left(9x^{2}-12x+4\right)-40x^{2}=-205
\left(3x-2\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ব্যৱহাৰ কৰক৷
4x^{2}+16x+16-5x\left(7-3x\right)\left(7+3x\right)-9x^{2}+12x-4-40x^{2}=-205
9x^{2}-12x+4ৰ বিপৰীত বিচাৰিবলৈ, প্ৰত্যেকটো পদৰ বিপৰীত অৰ্থ বিচাৰক৷
4x^{2}+16x+16-5x\left(7-3x\right)\left(7+3x\right)-49x^{2}+12x-4=-205
-49x^{2} লাভ কৰিবলৈ -9x^{2} আৰু -40x^{2} একত্ৰ কৰক৷
4x^{2}+16x+16-5x\left(7-3x\right)\left(7+3x\right)-49x^{2}+12x-4+205=0
উভয় কাষে 205 যোগ কৰক।
4x^{2}+16x+16-5x\left(7-3x\right)\left(7+3x\right)-49x^{2}+12x+201=0
201 লাভ কৰিবৰ বাবে -4 আৰু 205 যোগ কৰক৷
4x^{2}+16x+16+\left(-35x+15x^{2}\right)\left(7+3x\right)-49x^{2}+12x+201=0
-5xক 7-3xৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
4x^{2}+16x+16-245x+45x^{3}-49x^{2}+12x+201=0
7+3xৰ দ্বাৰা -35x+15x^{2} পূৰণ কৰিবলৈ বিভাজক সম্পত্তি ব্যৱহাৰ কৰক আৰু পদসমূহৰ দৰে একত্ৰিত কৰক৷
4x^{2}-229x+16+45x^{3}-49x^{2}+12x+201=0
-229x লাভ কৰিবলৈ 16x আৰু -245x একত্ৰ কৰক৷
-45x^{2}-229x+16+45x^{3}+12x+201=0
-45x^{2} লাভ কৰিবলৈ 4x^{2} আৰু -49x^{2} একত্ৰ কৰক৷
-45x^{2}-217x+16+45x^{3}+201=0
-217x লাভ কৰিবলৈ -229x আৰু 12x একত্ৰ কৰক৷
-45x^{2}-217x+217+45x^{3}=0
217 লাভ কৰিবৰ বাবে 16 আৰু 201 যোগ কৰক৷
45x^{3}-45x^{2}-217x+217=0
এটা মান্য ৰূপত ৰাখি সমীকৰণ পুনঃব্যৱস্থিত কৰক৷ সৰ্বোচ্চৰ পৰা নিম্ন পাৱাৰ ক্ৰমত পদসমূহ ৰাখক৷
±\frac{217}{45},±\frac{217}{15},±\frac{217}{9},±\frac{217}{5},±\frac{217}{3},±217,±\frac{31}{45},±\frac{31}{15},±\frac{31}{9},±\frac{31}{5},±\frac{31}{3},±31,±\frac{7}{45},±\frac{7}{15},±\frac{7}{9},±\frac{7}{5},±\frac{7}{3},±7,±\frac{1}{45},±\frac{1}{15},±\frac{1}{9},±\frac{1}{5},±\frac{1}{3},±1
ৰেশ্যনেল বৰ্গমূল সূত্ৰৰ দ্বাৰা, এটা বহুপদৰ সকলো ৰেশ্যনেল ৰুট \frac{p}{q}ৰ ৰূপত থাকে, য'ত pএ ধ্ৰুৱক ৰাশি 217ক হৰণ কৰে আৰু qএ প্ৰমুখ গুণাংক 45ক হৰণ কৰে। সকলো প্ৰাৰ্থীৰ সূচী \frac{p}{q}।
x=1
পূৰ্ণ মান অনুসৰি আটাইতকৈ সৰু মানটোৰ পৰা আৰম্ভ কৰি সকলো পূৰ্ণ সংখ্যাৰ এনে এটা বৰ্গমূল বিচাৰি উলিয়াওক। যদি পূৰ্ণ সংখ্যাৰ বৰ্গমূল পোৱা নাযায়, তেন্তে ভগ্নাংশ ব্যৱহাৰ কৰি চাওক।
45x^{2}-217=0
গুণনীয়কৰ সূত্ৰ অনুসৰি, x-k হৈছে প্ৰত্যেক বৰ্গমূল kৰ বাবে বহুপদৰ এটা গুণনীয়ক। 45x^{2}-217 লাভ কৰিবলৈ x-1ৰ দ্বাৰা 45x^{3}-45x^{2}-217x+217 হৰণ কৰক৷ সমীকৰণটো সমাধান কৰক য'ত ফলাফল 0ৰ সমান হয়।
x=\frac{0±\sqrt{0^{2}-4\times 45\left(-217\right)}}{2\times 45}
ax^{2}+bx+c=0 প্ৰপত্ৰৰ সকলো সমীকৰণ দ্বিঘাত সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। aৰ বাবে 45ৰ বিকল্প দিয়ক, bৰ বাবে 0, আৰু দ্বিঘাত সূত্ৰত cৰ বাবে -217।
x=\frac{0±6\sqrt{1085}}{90}
গণনা কৰক৷
x=-\frac{\sqrt{1085}}{15} x=\frac{\sqrt{1085}}{15}
যেতিয়া ± যোগ হয় আৰু যেতিয়া ± বিয়োগ হয় তেতিয়া 45x^{2}-217=0 সমীকৰণটো সমাধান কৰক।
x=1 x=-\frac{\sqrt{1085}}{15} x=\frac{\sqrt{1085}}{15}
বিচাৰি পোৱা সকলো ফলাফলৰ তালিকা সৃষ্টি কৰক।
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}